在不到O(n)的时间内找到有限范围数组中每个元素的频率

给定一个正整数排序数组,数组中每个元素的出现次数。假设数组中的所有元素都小于某个常数M。 在不遍历整个数组的情况下执行此操作。i、 e.预期时间复杂度小于O(n)。

null

例如:

Input: arr[] = [1, 1, 1, 2, 3, 3, 5,               5, 8, 8, 8, 9, 9, 10] Output:Element 1 occurs 3 timesElement 2 occurs 1 timesElement 3 occurs 2 timesElement 5 occurs 2 timesElement 8 occurs 3 timesElement 9 occurs 2 timesElement 10 occurs 1 timesInput: arr[] = [2, 2, 6, 6, 7, 7, 7, 11] Output:Element 2 occurs 2 timesElement 6 occurs 2 timesElement 7 occurs 3 timesElement 11 occurs 1 times

方法1: 该方法采用线性搜索技术,不使用辅助空间。

  • 方法: 如果当前元素和前一个元素相同,则遍历输入数组并增加元素的频率,否则重置频率并打印元素及其频率。
  • 算法:
    • 将频率初始化为1,并将索引设置为1。
    • 从索引位置遍历数组,检查当前元素是否等于上一个元素。
    • 如果是,增加频率和索引,并重复步骤2。否则,打印元素及其频率,然后重复步骤2。
    • 最后(角盒),打印最后一个元素及其频率。
  • 实施:

C++

// C++ program to count number of occurrences of
// each element in the array in O(n) time and O(1) space
#include <iostream>
using namespace std;
void findFrequencies( int ele[], int n)
{
int freq = 1;
int idx = 1;
int element = ele[0];
while (idx < n) {
// check if the current element is equal to
// previous element.
if (ele[idx - 1] == ele[idx]) {
freq++;
idx++;
}
else {
cout << element << " " << freq << endl;
element = ele[idx];
idx++;
// reset the frequency
freq = 1;
}
}
// print the last element and its frequency
cout << element << " " << freq;
}
int main()
{
cout << "---frequencies in a sorted array----" << endl;
int arr[]
= { 10, 20, 30, 30, 30, 40, 50, 50, 50, 50, 70 };
int n = sizeof (arr) / sizeof (arr[0]);
findFrequencies(arr, n);
}
// This code is contributed by anushkaseehh


JAVA

// Java program to count number of occurrences of
// each element in the array in O(n) time and O(1) space
function void findFrequencies(ele)
{
var freq = 1 ;
var idx = 1 ;
var element = ele[ 0 ];
while (idx < ele.length) {
// check if the current element is equal to
// previous element.
if (ele[idx - 1 ] == ele[idx]) {
freq++;
idx++;
}
else {
document.write(element + " " + freq+ "<br>" );
element = ele[idx];
idx++;
// reset the frequency
freq = 1 ;
}
}
// print the last element and its frequency
document.write(element + " " + freq + "<br>" );
}
// Driver code
document.write(
"---frequencies in a sorted array----" + "<br>" );
findFrequencies( new Array ( 10 , 20 , 30 , 30 , 30 , 40 ,
50 , 50 , 50 , 50 , 70 ));
//this code is contributed by shivanisinghss2110


Python3

# python program to count number of occurrences of
# each element in the array in O(n) time and O(1) space
def findFrequencies(ele, n):
freq = 1
idx = 1
element = ele[ 0 ]
while (idx < n):
# check if the current element is equal to
# previous element.
if (ele[idx - 1 ] = = ele[idx]):
freq + = 1
idx + = 1
else :
print (element , " " ,freq);
element = ele[idx]
idx + = 1
# reset the frequency
freq = 1
# print the last element and its frequency
print (element , " " , freq);
print ( "---frequencies in a sorted array----" );
arr = [ 10 , 20 , 30 , 30 , 30 , 40 , 50 , 50 , 50 , 50 , 70 ];
n = len (arr)
findFrequencies(arr, n)
# This code is contributed by shivanisinghss2110


C#

// C# program to count number of occurrences of
// each element in the array in O(n) time and O(1) space
using System;
class GFG {
public static void findFrequencies( int [] ele)
{
int freq = 1;
int idx = 1;
int element = ele[0];
while (idx < ele.Length)
{
// check if the current element is equal to
// previous element.
if (ele[idx - 1] == ele[idx]) {
freq++;
idx++;
}
else {
Console.WriteLine(element + " " + freq);
element = ele[idx];
idx++;
// reset the frequency
freq = 1;
}
}
// print the last element and its frequency
Console.WriteLine(element + " " + freq);
}
// Driver code
public static void Main(String[] args)
{
Console.WriteLine(
"---frequencies in a sorted array----" );
findFrequencies( new int [] { 10, 20, 30, 30, 30, 40,
50, 50, 50, 50, 70 });
}
}


Javascript

<script>
// JavaScript program to count number of occurrences of
// each element in the array in O(n) time and O(1) space
function void findFrequencies(ele)
{
var freq = 1;
var idx = 1;
var element = ele[0];
while (idx < ele.length)
{
// check if the current element is equal to
// previous element.
if (ele[idx - 1] == ele[idx]) {
freq++;
idx++;
}
else
{
document.write(element + " " + freq);
element = ele[idx];
idx++;
// reset the frequency
freq = 1;
}
}
// print the last element and its frequency
document.write(element + " " + freq);
}
// Driver code
document.write(
"---frequencies in a sorted array----" );
findFrequencies( new var [] { 10, 20, 30, 30, 30, 40,
50, 50, 50, 50, 70 });
// This code is contributed by shivanisinghss2110
</script>


输出

---frequencies in a sorted array----10 120 130 340 150 470 1

方法2 : 这种方法使用了 线性搜索 解决以下问题。

  • 方法: 其思想是遍历输入数组,对于数组中的每个不同元素,将其频率存储在 哈希图 ,最后打印HashMap。
  • 算法:
    1. 创建一个HashMap将频率映射到元素,即存储元素频率对。
    2. 从头到尾遍历阵列。
    3. 对于阵列中的每个元素,更新频率,即 hm[array[i]]++
    4. 遍历HashMap并打印元素频率对。
  • 实施:

C++

// C++ program to count number of occurrences of
// each element in the array #include <iostream>
#include <bits/stdc++.h>
using namespace std;
// It prints number of
// occurrences of each element in the array.
void findFrequency( int arr[], int n)
{
// HashMap to store frequencies
unordered_map< int , int > mp;
// traverse the array
for ( int i = 0; i < n; i++) {
// update the frequency
mp[arr[i]]++;
}
// traverse the hashmap
for ( auto i : mp) {
cout << "Element " << i.first << " occurs "
<< i.second << " times" << endl;
}
}
// Driver function
int main()
{
int arr[] = { 1, 1, 1, 2, 3, 3, 5, 5,
8, 8, 8, 9, 9, 10 };
int n = sizeof (arr) / sizeof (arr[0]);
findFrequency(arr, n);
return 0;
}


JAVA

// Java program to count number
// of occurrences of each
// element in the array
import java.io.*;
import java.util.*;
class GFG
{
// It prints number of
// occurrences of each
// element in the array.
static void findFrequency( int [] arr,
int n)
{
Map<Integer, Integer> mp
= new HashMap<Integer, Integer>();
// traverse the array
for ( int i = 0 ; i < n; i++)
{
// update the frequency
if (!mp.containsKey(arr[i]))
mp.put(arr[i], 0 );
mp.put(arr[i],mp.get(arr[i])+ 1 );
}
// traverse the hashmap
for (Map.Entry<Integer, Integer> kvp : mp.entrySet())
{
System.out.println( "Element " + kvp.getKey() +
" occurs " + kvp.getValue() +
" times" );
}
}
// Driver function
public static void main (String[] args) {
int [] arr = { 1 , 1 , 1 , 2 ,
3 , 3 , 5 , 5 ,
8 , 8 , 8 , 9 ,
9 , 10 };
int n = arr.length;
findFrequency(arr, n);
}
}
// This code is contributed by avanitrachhadiya2155


Python3

# Python program to count number of occurrences of
# each element in the array #include <iostream>
# It prints number of
# occurrences of each element in the array.
def findFrequency(arr, n):
# HashMap to store frequencies
mp = {}
# traverse the array
for i in range (n):
# update the frequency
if arr[i] not in mp:
mp[arr[i]] = 0
mp[arr[i]] + = 1
# traverse the hashmap
for i in mp:
print ( "Element" , i, "occurs" , mp[i], "times" )
# Driver function
arr = [ 1 , 1 , 1 , 2 , 3 , 3 , 5 , 5 , 8 , 8 , 8 , 9 , 9 , 10 ]
n = len (arr)
findFrequency(arr, n)
# This code is contributed by shubhamsingh10


C#

// C# program to count number
// of occurrences of each
// element in the array
using System;
using System.Collections.Generic;
class GFG{
// It prints number of
// occurrences of each
// element in the array.
static void findFrequency( int [] arr,
int n)
{
// HashMap to store frequencies
Dictionary < int ,
int > mp =
new Dictionary< int ,
int >();
// traverse the array
for ( int i = 0; i < n; i++)
{
// update the frequency
if (!mp.ContainsKey(arr[i]))
mp[arr[i]] = 0;
mp[arr[i]]++;
}
// traverse the hashmap
foreach (KeyValuePair< int ,
int > kvp in mp)
Console.WriteLine( "Element " + kvp.Key +
" occurs " + kvp.Value +
" times" );
}
// Driver function
public static void Main()
{
int [] arr = {1, 1, 1, 2,
3, 3, 5, 5,
8, 8, 8, 9,
9, 10};
int n = arr.Length;
findFrequency(arr, n);
}
}
// This code is contributed by Chitranayal


Javascript

<script>
// Javascript program to count number
// of occurrences of each
// element in the array
// It prints number of
// occurrences of each
// element in the array.
function findFrequency(arr, n)
{
let mp = new Map();
// Traverse the array
for (let i = 0; i < n; i++)
{
// Update the frequency
if (!mp.has(arr[i]))
mp.set(arr[i],0);
mp.set(arr[i], mp.get(arr[i]) + 1);
}
// Traverse the hashmap
for (let [key, value] of mp.entries())
{
document.write( "Element " + key +
" occurs " + value +
" times<br>" );
}
}
// Driver code
let arr = [ 1, 1, 1, 2, 3, 3, 5,
5, 8, 8, 8, 9, 9, 10 ];
let n = arr.length;
findFrequency(arr, n);
// This code is contributed by patel2127
</script>


输出

Element 10 occurs 1 timesElement 2 occurs 1 timesElement 9 occurs 2 timesElement 1 occurs 3 timesElement 8 occurs 3 timesElement 3 occurs 2 timesElement 5 occurs 2 times

复杂性分析:

  • 时间复杂性: O(n),只需要遍历数组一次。
  • 空间复杂性: O(n),要在HashMap中存储元素,需要额外的空间。

方法3 : 该方法使用二进制搜索技术来获得解。

  • 方法: 如果对其所有元素进行排序,则问题可以在不到O(n)的时间内解决,即,如果阵列中存在相似的元素,则元素位于相邻的子阵列中,或者可以说,如果子阵列的末端相同,则子阵列中的所有元素都相等。因此,该元素的计数是子数组的大小,该子数组的所有元素都不需要计数。
  • 算法:
    1. 创建一个HashMap( 陛下 )存储元素的频率。
    2. 创建一个接受数组和大小的递归函数。
    3. 检查数组的第一个元素是否等于最后一个元素。如果相等,则所有元素都相同,并通过 hm[数组[0]+=大小
    4. 否则,将数组分成两个相等的部分,并对这两部分递归调用函数。
    5. 遍历hashmap并打印元素频率对。
  • 实施:

C++

// C++ program to count number of occurrences of
// each element in the array in less than O(n) time
#include <iostream>
#include <vector>
using namespace std;
// A recursive function to count number of occurrences
// for each element in the array without traversing
// the whole array
void findFrequencyUtil( int arr[], int low, int high,
vector< int >& freq)
{
// If element at index low is equal to element
// at index high in the array
if (arr[low] == arr[high]) {
// increment the frequency of the element
// by count of elements between high and low
freq[arr[low]] += high - low + 1;
}
else {
// Find mid and recurse for left and right
// subarray
int mid = (low + high) / 2;
findFrequencyUtil(arr, low, mid, freq);
findFrequencyUtil(arr, mid + 1, high, freq);
}
}
// A wrapper over recursive function
// findFrequencyUtil(). It print number of
// occurrences of each element in the array.
void findFrequency( int arr[], int n)
{
// create a empty vector to store frequencies
// and initialize it by 0. Size of vector is
// maximum value (which is last value in sorted
// array) plus 1.
vector< int > freq(arr[n - 1] + 1, 0);
// Fill the vector with frequency
findFrequencyUtil(arr, 0, n - 1, freq);
// Print the frequencies
for ( int i = 0; i <= arr[n - 1]; i++)
if (freq[i] != 0)
cout << "Element " << i << " occurs "
<< freq[i] << " times" << endl;
}
// Driver function
int main()
{
int arr[] = { 1, 1, 1, 2, 3, 3, 5, 5,
8, 8, 8, 9, 9, 10 };
int n = sizeof (arr) / sizeof (arr[0]);
findFrequency(arr, n);
return 0;
}


JAVA

// Java program to count number of occurrences of
// each element in the array in less than O(n) time
import java.util.*;
class GFG {
// A recursive function to count number of occurrences
// for each element in the array without traversing
// the whole array
static void findFrequencyUtil( int arr[], int low,
int high, int [] freq)
{
// If element at index low is equal to element
// at index high in the array
if (arr[low] == arr[high]) {
// increment the frequency of the element
// by count of elements between high and low
freq[arr[low]] += high - low + 1 ;
}
else {
// Find mid and recurse for left and right
// subarray
int mid = (low + high) / 2 ;
findFrequencyUtil(arr, low, mid, freq);
findFrequencyUtil(arr, mid + 1 , high, freq);
}
}
// A wrapper over recursive function
// findFrequencyUtil(). It print number of
// occurrences of each element in the array.
static void findFrequency( int arr[], int n)
{
// create a empty vector to store frequencies
// and initialize it by 0. Size of vector is
// maximum value (which is last value in sorted
// array) plus 1.
int [] freq = new int [arr[n - 1 ] + 1 ];
// Fill the vector with frequency
findFrequencyUtil(arr, 0 , n - 1 , freq);
// Print the frequencies
for ( int i = 0 ; i <= arr[n - 1 ]; i++)
if (freq[i] != 0 )
System.out.println( "Element " + i + " occurs " + freq[i] + " times" );
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { 1 , 1 , 1 , 2 , 3 , 3 , 5 ,
5 , 8 , 8 , 8 , 9 , 9 , 10 };
int n = arr.length;
findFrequency(arr, n);
}
}
// This code is contributed by 29AjayKumar


Python3

# Python 3 program to count number of occurrences of
# each element in the array in less than O(n) time
# A recursive function to count number of occurrences
# for each element in the array without traversing
# the whole array
def findFrequencyUtil(arr, low, high, freq):
# If element at index low is equal to element
# at index high in the array
if (arr[low] = = arr[high]):
# increment the frequency of the element
# by count of elements between high and low
freq[arr[low]] + = high - low + 1
else :
# Find mid and recurse for left
# and right subarray
mid = int ((low + high) / 2 )
findFrequencyUtil(arr, low, mid, freq)
findFrequencyUtil(arr, mid + 1 , high, freq)
# A wrapper over recursive function
# findFrequencyUtil(). It print number of
# occurrences of each element in the array.
def findFrequency(arr, n):
# create a empty vector to store frequencies
# and initialize it by 0. Size of vector is
# maximum value (which is last value in sorted
# array) plus 1.
freq = [ 0 for i in range (n - 1 + 1 )]
# Fill the vector with frequency
findFrequencyUtil(arr, 0 , n - 1 , freq)
# Print the frequencies
for i in range ( 0 , arr[n - 1 ] + 1 , 1 ):
if (freq[i] ! = 0 ):
print ( "Element" , i, "occurs" ,
freq[i], "times" )
# Driver Code
if __name__ = = '__main__' :
arr = [ 1 , 1 , 1 , 2 , 3 , 3 , 5 ,
5 , 8 , 8 , 8 , 9 , 9 , 10 ]
n = len (arr)
findFrequency(arr, n)
# This code is contributed by
# Surendra_Gangwar


C#

// C# program to count number of occurrences of
// each element in the array in less than O(n) time
using System;
class GFG {
// A recursive function to count number of occurrences
// for each element in the array without traversing
// the whole array
static void findFrequencyUtil( int [] arr, int low,
int high, int [] freq)
{
// If element at index low is equal to element
// at index high in the array
if (arr[low] == arr[high]) {
// increment the frequency of the element
// by count of elements between high and low
freq[arr[low]] += high - low + 1;
}
else {
// Find mid and recurse for left and right
// subarray
int mid = (low + high) / 2;
findFrequencyUtil(arr, low, mid, freq);
findFrequencyUtil(arr, mid + 1, high, freq);
}
}
// A wrapper over recursive function
// findFrequencyUtil(). It print number of
// occurrences of each element in the array.
static void findFrequency( int [] arr, int n)
{
// create a empty vector to store frequencies
// and initialize it by 0. Size of vector is
// maximum value (which is last value in sorted
// array) plus 1.
int [] freq = new int [arr[n - 1] + 1];
// Fill the vector with frequency
findFrequencyUtil(arr, 0, n - 1, freq);
// Print the frequencies
for ( int i = 0; i <= arr[n - 1]; i++)
if (freq[i] != 0)
Console.WriteLine( "Element " + i + " occurs " + freq[i] + " times" );
}
// Driver Code
public static void Main(String[] args)
{
int [] arr = { 1, 1, 1, 2, 3, 3, 5,
5, 8, 8, 8, 9, 9, 10 };
int n = arr.Length;
findFrequency(arr, n);
}
}
// This code is contributed by Princi Singh


Javascript

<script>
// Javascript program to count number of occurrences of
// each element in the array in less than O(n) time
// A recursive function to count number of occurrences
// for each element in the array without traversing
// the whole array
function findFrequencyUtil(arr, low, high, freq)
{
// If element at index low is equal to element
// at index high in the array
if (arr[low] == arr[high])
{
// increment the frequency of the element
// by count of elements between high and low
freq[arr[low]] += high - low + 1;
}
else
{
// Find mid and recurse for left and right
// subarray
let mid = Math.floor((low + high) / 2);
findFrequencyUtil(arr, low, mid, freq);
findFrequencyUtil(arr, mid + 1, high, freq);
}
}
// A wrapper over recursive function
// findFrequencyUtil(). It print number of
// occurrences of each element in the array.
function findFrequency(arr, n)
{
// create a empty vector to store frequencies
// and initialize it by 0. Size of vector is
// maximum value (which is last value in sorted
// array) plus 1.
let freq = new Array(arr[n - 1] + 1);
for (let i = 0; i < arr[n - 1] + 1; i++)
{
freq[i] = 0;
}
// Fill the vector with frequency
findFrequencyUtil(arr, 0, n - 1, freq);
// Print the frequencies
for (let i = 0; i <= arr[n - 1]; i++)
if (freq[i] != 0)
document.write( "Element " + i + " occurs " + freq[i] + " times<br>" );
}
// Driver Code
let arr = [1, 1, 1, 2, 3, 3, 5,
5, 8, 8, 8, 9, 9, 10 ];
let n = arr.length;
findFrequency(arr, n);
// This code is contributed by rag2127.
</script>


输出

Element 1 occurs 3 timesElement 2 occurs 1 timesElement 3 occurs 2 timesElement 5 occurs 2 timesElement 8 occurs 3 timesElement 9 occurs 2 timesElement 10 occurs 1 times

复杂性分析:

  • 时间复杂性: O(m logn)。 其中m是大小为n的数组中不同元素的数量。由于m<=m(一个常数)(元素在有限范围内),该解的时间复杂度为O(logn)。
  • 空间复杂性: O(n)。 要在HashMap中存储元素,需要额外的空间。

方法4

在这种方法中,我们通过修改哈希映射的内容来使用与哈希映射相同的数组。

让我们试运行一个例子。

arr={1,1,1,2,3,3,5,5,8,8,8,9,10};

步骤1:从数组的每个元素中减去1

arr={0,0,0,1,2,2,4,4,7,7,8,9}

第2步:-将n添加到当前数组元素指向的索引中。

例如:-

当i=0时,arr[arr[0]%n]=0向arr[0]加n,arr[0]=14;

当i=1时,arr[arr[1]%n]=14加n到arr[0],arr[0]=28;

同样地,用同样的方法找到修改后的数组,我们将得到如下数组:

arr={42,14,28,1,30,2,4,46,35,21,7,8,8,9}

第3步:-现在进入第2步,如果您注意到我们将n值添加到特定元素指向的索引中。如果我们不止一次有一个元素指向同一个索引,那么在这种情况下,修改后的数字除以 N 给我们数字的频率。

例如

i=0时;arr[0]=42;arr[0]/n=3这意味着0在修改后的数组中出现了三次,如步骤1的arr所示。

i=1时;arr[1]=14;arr[1]/14=1这意味着1在修改后的数组中出现了一次,正如您在步骤1的arr中看到的那样。

同样,对于其他我们可以计算的值。

C++

// C++ program to count number of occurrences of
// each element in the array #include <iostream>
#include <bits/stdc++.h>
using namespace std;
// It prints number of occurrences of each element in the
// array.
void findFrequency( int input[], int n)
{
for ( int i = 0; i < n; i++)
input[i]--;
for ( int i = 0; i < n; i++)
input[input[i] % n] += n;
for ( int i = 0; i < n; i++) {
if (input[i] / n)
cout << "Element " << (i + 1) << " occurs "
<< input[i] / n << " times" << endl;
// Change the element back to original value
input[i] = input[i] % n + 1;
}
}
// Driver function
int main()
{
int arr[]
= { 1, 1, 1, 2, 3, 3, 5, 5, 8, 8, 8, 9, 9, 10 };
int n = sizeof (arr) / sizeof (arr[0]);
findFrequency(arr, n);
return 0;
}
// This code is contributed by aditya kumar(adiyakumar129)


JAVA

// Java program to count number of occurrences of each
// element in the array
import java.io.*;
import java.util.*;
class GFG {
// It prints number of occurrences of each element in
// the array.
static void findFrequency( int [] input, int n)
{
for ( int i = 0 ; i < n; i++)
input[i]--;
for ( int i = 0 ; i < n; i++)
input[input[i] % n] += n;
for ( int i = 0 ; i < n; i++) {
if ((input[i] / n) != 0 )
System.out.println(
"Element " + (i + 1 ) + " occurs "
+ input[i] / n + " times" );
// Change the element back to original value
input[i] = input[i] % n + 1 ;
}
}
// Driver function
public static void main(String[] args)
{
int [] arr
= { 1 , 1 , 1 , 2 , 3 , 3 , 5 , 5 , 8 , 8 , 8 , 9 , 9 , 10 };
int n = arr.length;
findFrequency(arr, n);
}
}
// This code is contributed by aditya kumar(adiyakumar129)


C#

// C# program to count number of occurrences of each element
// in the array
using System;
public class GFG {
// It prints number of occurrences of each element in
// the array.
static void findFrequency( int [] input, int n)
{
for ( int i = 0; i < n; i++)
input[i]--;
for ( int i = 0; i < n; i++)
input[input[i] % n] += n;
for ( int i = 0; i < n; i++) {
if ((input[i] / n) != 0)
Console.WriteLine(
"Element " + (i + 1) + " occurs "
+ input[i] / n + " times" );
// Change the element back to original value
input[i] = input[i] % n + 1;
}
}
// Driver function
public static void Main(String[] args)
{
int [] arr
= { 1, 1, 1, 2, 3, 3, 5, 5, 8, 8, 8, 9, 9, 10 };
int n = arr.Length;
findFrequency(arr, n);
}
}
// This code is contributed by shikhasingrajput


Javascript

<script>
// Javascript program to count number of occurrences of
// each element in the array
// It prints number of
// occurrences of each element in the array.
function findFrequency(input, n)
{
for (let i = 0; i < n; i++)
input[i]--;
for (let i = 0; i < n; i++)
input[input[i] % n] += n;
console.log(input)
for (let i = 0; i < n; i++) {
if (Math.floor(input[i] / n))
document.write( "Element " + (i + 1) +
" occurs " + Math.floor(input[i] / n) + " times <br>" );
// Change the element back to original value
input[i] = input[i] % n + 1;
}
}
// Driver function
let arr = [1, 1, 1, 2, 3, 3, 5, 5, 8, 8, 8, 9, 9, 10];
let n = arr.length;
findFrequency(arr, n);
// This code is contributed by Saurabh Jaiswal
</script>


输出

Element 1 occurs 3 timesElement 2 occurs 1 timesElement 3 occurs 2 timesElement 5 occurs 2 timesElement 8 occurs 3 timesElement 9 occurs 2 timesElement 10 occurs 1 times

https://youtu.be/B2hI-QPoisk 本文由 阿迪蒂亚·戈尔 .如果你喜欢GeekSforgek,并想贡献自己的力量,你也可以使用 写极客。组织 或者把你的文章寄去评论-team@geeksforgeeks.org.看到你的文章出现在Geeksforgeks主页上,并帮助其他极客。 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。

© 版权声明
THE END
喜欢就支持一下吧
点赞14 分享