在给定的直方图中找出可能的最大矩形区域,其中最大的矩形可以由多个连续的条组成。为简单起见,假设所有条都具有相同的宽度,且宽度为1个单位。 例如,考虑下面的直方图,具有7个高度条{ 6, 2, 5,4, 5, 1,6 }。最大可能的矩形为12(见下图,最大面积矩形以红色突出显示)
A. 简单解决方案 一个接一个地考虑所有的酒吧作为起点,并计算所有矩形的面积从每个酒吧开始。最后返回所有可能区域的最大值。这个解决方案的时间复杂度为O(n^2)。 我们可以使用 分而治之 在O(nLogn)时间内解决这个问题。其思想是在给定的数组中找到最小值。一旦我们有了最小值的索引,最大面积就是以下三个值的最大值。 (a) 最小值左侧的最大面积(不包括最小值) b) 最小值右侧的最大面积(不包括最小值) c) 条数乘以最小值。 最小值栏左右两侧的面积可以递归计算。如果我们使用线性搜索来寻找最小值,则该算法的最坏情况时间复杂度为O(n^2)。在最坏的情况下,我们总是一边有(n-1)个元素,另一边有0个元素,如果找到最小值需要O(n)个时间,我们得到了类似于快速排序最坏情况的递归。 如何有效地找到最小值? 基于段树的最小范围查询 可以用来做这个。我们根据给定的直方图高度建立分段树。构建段树后,所有 范围最小查询需要O(Logn)时间 因此,算法的复杂度变得更高。 总时间=构建段树的时间+递归查找最大面积的时间 构建段树的时间为O(n) .让递归查找最大面积的时间为T(n)。可以这样写。 T(n)=O(Logn)+T(n-1) 上述递推的解是O(nLogn)。所以总时间是O(n)+O(nLogn),也就是O(nLogn)。 下面是C++实现上述算法。
C++
// A Divide and Conquer Program to find maximum rectangular area in a histogram #include <bits/stdc++.h> using namespace std; // A utility function to find minimum of three integers int max( int x, int y, int z) { return max(max(x, y), z); } // A utility function to get minimum of two numbers in hist[] int minVal( int *hist, int i, int j) { if (i == -1) return j; if (j == -1) return i; return (hist[i] < hist[j])? i : j; } // A utility function to get the middle index from corner indexes. int getMid( int s, int e) { return s + (e -s)/2; } /* A recursive function to get the index of minimum value in a given range of indexes. The following are parameters for this function. hist --> Input array for which segment tree is built st --> Pointer to segment tree index --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[index] qs & qe --> Starting and ending indexes of query range */ int RMQUtil( int *hist, int *st, int ss, int se, int qs, int qe, int index) { // If segment of this node is a part of given range, then return the // min of the segment if (qs <= ss && qe >= se) return st[index]; // If segment of this node is outside the given range if (se < qs || ss > qe) return -1; // If a part of this segment overlaps with the given range int mid = getMid(ss, se); return minVal(hist, RMQUtil(hist, st, ss, mid, qs, qe, 2*index+1), RMQUtil(hist, st, mid+1, se, qs, qe, 2*index+2)); } // Return index of minimum element in range from index qs (query start) to // qe (query end). It mainly uses RMQUtil() int RMQ( int *hist, int *st, int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n-1 || qs > qe) { cout << "Invalid Input" ; return -1; } return RMQUtil(hist, st, 0, n-1, qs, qe, 0); } // A recursive function that constructs Segment Tree for hist[ss..se]. // si is index of current node in segment tree st int constructSTUtil( int hist[], int ss, int se, int *st, int si) { // If there is one element in array, store it in current node of // segment tree and return if (ss == se) return (st[si] = ss); // If there are more than one elements, then recur for left and // right subtrees and store the minimum of two values in this node int mid = getMid(ss, se); st[si] = minVal(hist, constructSTUtil(hist, ss, mid, st, si*2+1), constructSTUtil(hist, mid+1, se, st, si*2+2)); return st[si]; } /* Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ int *constructST( int hist[], int n) { // Allocate memory for segment tree int x = ( int )( ceil (log2(n))); //Height of segment tree int max_size = 2*( int ) pow (2, x) - 1; //Maximum size of segment tree int *st = new int [max_size]; // Fill the allocated memory st constructSTUtil(hist, 0, n-1, st, 0); // Return the constructed segment tree return st; } // A recursive function to find the maximum rectangular area. // It uses segment tree 'st' to find the minimum value in hist[l..r] int getMaxAreaRec( int *hist, int *st, int n, int l, int r) { // Base cases if (l > r) return INT_MIN; if (l == r) return hist[l]; // Find index of the minimum value in given range // This takes O(Logn)time int m = RMQ(hist, st, n, l, r); /* Return maximum of following three possible cases a) Maximum area in Left of min value (not including the min) a) Maximum area in right of min value (not including the min) c) Maximum area including min */ return max(getMaxAreaRec(hist, st, n, l, m-1), getMaxAreaRec(hist, st, n, m+1, r), (r-l+1)*(hist[m]) ); } // The main function to find max area int getMaxArea( int hist[], int n) { // Build segment tree from given array. This takes // O(n) time int *st = constructST(hist, n); // Use recursive utility function to find the // maximum area return getMaxAreaRec(hist, st, n, 0, n-1); } // Driver program to test above functions int main() { int hist[] = {6, 1, 5, 4, 5, 2, 6}; int n = sizeof (hist)/ sizeof (hist[0]); cout << "Maximum area is " << getMaxArea(hist, n); return 0; } |
JAVA
// A Divide and Conquer Program to find maximum rectangular area in a histogram import java.util.*; class GFG{ static int [] hist; static int [] st; // A utility function to find minimum of three integers static int max( int x, int y, int z) { return Math.max(Math.max(x, y), z); } // A utility function to get minimum of two numbers in hist[] static int minVal( int i, int j) { if (i == - 1 ) return j; if (j == - 1 ) return i; return (hist[i] < hist[j])? i : j; } // A utility function to get the middle index from corner indexes. static int getMid( int s, int e) { return s + (e -s)/ 2 ; } /* A recursive function to get the index of minimum value in a given range of indexes. The following are parameters for this function. hist -. Input array for which segment tree is built st -. Pointer to segment tree index -. Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se -. Starting and ending indexes of the segment represented by current node, i.e., st[index] qs & qe -. Starting and ending indexes of query range */ static int RMQUtil( int ss, int se, int qs, int qe, int index) { // If segment of this node is a part of given range, then return the // min of the segment if (qs <= ss && qe >= se) return st[index]; // If segment of this node is outside the given range if (se < qs || ss > qe) return - 1 ; // If a part of this segment overlaps with the given range int mid = getMid(ss, se); return minVal( RMQUtil(ss, mid, qs, qe, 2 *index+ 1 ), RMQUtil( mid+ 1 , se, qs, qe, 2 *index+ 2 )); } // Return index of minimum element in range from index qs (query start) to // qe (query end). It mainly uses RMQUtil() static int RMQ( int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n- 1 || qs > qe) { System.out.print( "Invalid Input" ); return - 1 ; } return RMQUtil( 0 , n- 1 , qs, qe, 0 ); } // A recursive function that constructs Segment Tree for hist[ss..se]. // si is index of current node in segment tree st static int constructSTUtil( int ss, int se, int si) { // If there is one element in array, store it in current node of // segment tree and return if (ss == se) return (st[si] = ss); // If there are more than one elements, then recur for left and // right subtrees and store the minimum of two values in this node int mid = getMid(ss, se); st[si] = minVal( constructSTUtil( ss, mid, si* 2 + 1 ), constructSTUtil( mid+ 1 , se, si* 2 + 2 )); return st[si]; } /* Function to consegment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ static void constructST( int n) { // Allocate memory for segment tree int x = ( int )(Math.ceil(Math.log(n))); //Height of segment tree int max_size = 2 *( int )Math.pow( 2 , x) - 1 ; //Maximum size of segment tree st = new int [max_size* 2 ]; // Fill the allocated memory st constructSTUtil( 0 , n- 1 , 0 ); // Return the constructed segment tree // return st; } // A recursive function to find the maximum rectangular area. // It uses segment tree 'st' to find the minimum value in hist[l..r] static int getMaxAreaRec( int n, int l, int r) { // Base cases if (l > r) return Integer.MIN_VALUE; if (l == r) return hist[l]; // Find index of the minimum value in given range // This takes O(Logn)time int m = RMQ( n, l, r); /* Return maximum of following three possible cases a) Maximum area in Left of min value (not including the min) a) Maximum area in right of min value (not including the min) c) Maximum area including min */ return max(getMaxAreaRec( n, l, m - 1 ), getMaxAreaRec( n, m + 1 , r), (r - l + 1 )*(hist[m]) ); } // The main function to find max area static int getMaxArea( int n) { // Build segment tree from given array. This takes // O(n) time constructST(n); // Use recursive utility function to find the // maximum area return getMaxAreaRec( n, 0 , n - 1 ); } // Driver program to test above functions public static void main(String[] args) { int [] a = { 6 , 1 , 5 , 4 , 5 , 2 , 6 }; int n = a.length; hist = new int [n]; hist = a; System.out.print( "Maximum area is " + getMaxArea(n)); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 program for range minimum # query using segment tree # modified to return index of minimum instead of minimum itself # for further reference link #------------------------------------------------------------------------- from math import ceil,log2; # A utility function to get # minimum of two numbers def minVal(hist,x, y) : if x = = - 1 : return y if y = = - 1 : return x return x if (hist[x] < hist[y]) else y; # A utility function to get the # middle index from corner indexes. def getMid(s, e) : return s + (e - s) / / 2 ; """ A recursive function to get the minimum value in a given range of array indexes. The following are parameters for this function. st --> Pointer to segment tree index --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[index] qs & qe --> Starting and ending indexes of query range """ def RMQUtil( hist,st, ss, se, qs, qe, index) : # If segment of this node is a part # of given range, then return # the min of the segment if (qs < = ss and qe > = se) : return st[index]; # If segment of this node # is outside the given range if (se < qs or ss > qe) : return - 1 ; # If a part of this segment # overlaps with the given range mid = getMid(ss, se); return minVal(hist,RMQUtil(hist,st, ss, mid, qs, qe, 2 * index + 1 ), RMQUtil(hist,st, mid + 1 , se, qs, qe, 2 * index + 2 )); # Return minimum of elements in range # from index qs (query start) to # qe (query end). It mainly uses RMQUtil() def RMQ( hist,st, n, qs, qe) : # Check for erroneous input values if (qs < 0 or qe > n - 1 or qs > qe) : print ( "Invalid Input" ); return - 1 ; return RMQUtil(hist,st, 0 , n - 1 , qs, qe, 0 ); # A recursive function that constructs # Segment Tree for array[ss..se]. # si is index of current node in segment tree st def constructSTUtil(hist, ss, se, st, si) : # If there is one element in array, # store it in current node of # segment tree and return if (ss = = se) : st[si] = ss; return st[si]; # If there are more than one elements, # then recur for left and right subtrees # and store the minimum of two values in this node mid = getMid(ss, se); st[si] = minVal(hist,constructSTUtil(hist, ss, mid, st, si * 2 + 1 ), constructSTUtil(hist, mid + 1 , se, st, si * 2 + 2 )); return st[si]; """Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory """ def constructST( hist, n) : # Allocate memory for segment tree # Height of segment tree x = ( int )(ceil(log2(n))); # Maximum size of segment tree max_size = 2 * ( int )( 2 * * x) - 1 ; st = [ 0 ] * (max_size); # Fill the allocated memory st constructSTUtil(hist, 0 , n - 1 , st, 0 ); # Return the constructed segment tree return st; #---------------------------------------------------------------- # main program # Python3 program using Divide and Conquer # to find maximum rectangular area under a histogram def max_area_histogram(hist): area = 0 #initialize area st = constructST(hist, len (hist)) # construct the segment tree try : # try except block is generally used in this way # to suppress all type of exceptions raised. def fun(left,right): # this function "fun" calculates area # recursively between indices left and right nonlocal area # global area won't work here as # variable area is defined inside function # not in main(). if left = = right: return # the recursion has reached end index = RMQ(hist,st, len (hist), left, right - 1 ) # RMQ function returns index # of minimum value # in the range of [left,right-1] # can also be found by using min() but # results in O(n) instead of O(log n) for traversing area = max (area,hist[index] * (right - left)) # calculate area with minimum above fun(index + 1 ,right) fun(left,index) # initiate further recursion return fun( 0 , len (hist)) # initializes the recursion return (area) # return the max area to calling function # in this case "print" except : pass # Driver Code hist = [ 6 , 2 , 5 , 4 , 5 , 1 , 6 ] print ( "Maximum area is" , max_area_histogram(hist)) # This code is contributed # by Vishnudev C. |
输出:
Maximum area is 12
这个问题可以在线性时间内解决。见下文 第二组 对于线性时间解。 直方图中最大矩形面积的线性时间解 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。