无递归、无堆栈的有序树遍历!

使用Morris遍历,我们可以在不使用堆栈和递归的情况下遍历树。莫里斯遍历的思想是基于 线程二叉树 .在这个遍历过程中,我们首先创建指向顺序继承者的链接,并使用这些链接打印数据,最后还原更改以恢复原始树。

null
1. Initialize current as root 
2. While current is not NULL
   If the current does not have left child
      a) Print current’s data
      b) Go to the right, i.e., current = current->right
   Else
      a) Find rightmost node in current left subtree OR
              node whose right child == current.
         If we found right child == current
             a) Update the right child as NULL of that node whose right child is current
             b) Print current’s data
             c) Go to the right, i.e. current = current->right
         Else
             a) Make current as the right child of that rightmost 
                node we found; and 
             b) Go to this left child, i.e., current = current->left

尽管通过遍历修改了树,但完成后树会恢复到原始形状。不像 基于堆栈的遍历 ,此遍历不需要额外的空间。

C++

#include <stdio.h>
#include <stdlib.h>
/* A binary tree tNode has data, a pointer to left child
and a pointer to right child */
struct tNode {
int data;
struct tNode* left;
struct tNode* right;
};
/* Function to traverse the binary tree without recursion
and without stack */
void MorrisTraversal( struct tNode* root)
{
struct tNode *current, *pre;
if (root == NULL)
return ;
current = root;
while (current != NULL) {
if (current->left == NULL) {
printf ( "%d " , current->data);
current = current->right;
}
else {
/* Find the inorder predecessor of current */
pre = current->left;
while (pre->right != NULL
&& pre->right != current)
pre = pre->right;
/* Make current as the right child of its
inorder predecessor */
if (pre->right == NULL) {
pre->right = current;
current = current->left;
}
/* Revert the changes made in the 'if' part to
restore the original tree i.e., fix the right
child of predecessor */
else {
pre->right = NULL;
printf ( "%d " , current->data);
current = current->right;
} /* End of if condition pre->right == NULL */
} /* End of if condition current->left == NULL*/
} /* End of while */
}
/* UTILITY FUNCTIONS */
/* Helper function that allocates a new tNode with the
given data and NULL left and right pointers. */
struct tNode* newtNode( int data)
{
struct tNode* node = new tNode;
node->data = data;
node->left = NULL;
node->right = NULL;
return (node);
}
/* Driver program to test above functions*/
int main()
{
/* Constructed binary tree is
1
/
2     3
/
4     5
*/
struct tNode* root = newtNode(1);
root->left = newtNode(2);
root->right = newtNode(3);
root->left->left = newtNode(4);
root->left->right = newtNode(5);
MorrisTraversal(root);
return 0;
}


JAVA

// Java program to print inorder
// traversal without recursion
// and stack
/* A binary tree tNode has data,
a pointer to left child
and a pointer to right child */
class tNode {
int data;
tNode left, right;
tNode( int item)
{
data = item;
left = right = null ;
}
}
class BinaryTree {
tNode root;
/* Function to traverse a
binary tree without recursion
and without stack */
void MorrisTraversal(tNode root)
{
tNode current, pre;
if (root == null )
return ;
current = root;
while (current != null )
{
if (current.left == null )
{
System.out.print(current.data + " " );
current = current.right;
}
else {
/* Find the inorder
predecessor of current
*/
pre = current.left;
while (pre.right != null
&& pre.right != current)
pre = pre.right;
/* Make current as right
child of its
* inorder predecessor */
if (pre.right == null ) {
pre.right = current;
current = current.left;
}
/* Revert the changes made
in the 'if' part
to restore the original
tree i.e., fix
the right child of predecessor*/
else
{
pre.right = null ;
System.out.print(current.data + " " );
current = current.right;
} /* End of if condition pre->right == NULL
*/
} /* End of if condition current->left == NULL*/
} /* End of while */
}
// Driver Code
public static void main(String args[])
{
/* Constructed binary tree is
1
/
2      3
/
4     5
*/
BinaryTree tree = new BinaryTree();
tree.root = new tNode( 1 );
tree.root.left = new tNode( 2 );
tree.root.right = new tNode( 3 );
tree.root.left.left = new tNode( 4 );
tree.root.left.right = new tNode( 5 );
tree.MorrisTraversal(tree.root);
}
}
// This code has been contributed by Mayank
// Jaiswal(mayank_24)


Python 3

# Python program to do Morris inOrder Traversal:
# inorder traversal without recursion and without stack
class Node:
"""A binary tree node"""
def __init__( self , data, left = None , right = None ):
self .data = data
self .left = left
self .right = right
def morris_traversal(root):
"""Generator function for
iterative inorder tree traversal"""
current = root
while current is not None :
if current.left is None :
yield current.data
current = current.right
else :
# Find the inorder
# predecessor of current
pre = current.left
while pre.right is not None
and pre.right is not current:
pre = pre.right
if pre.right is None :
# Make current as right
# child of its inorder predecessor
pre.right = current
current = current.left
else :
# Revert the changes made
# in the 'if' part to restore the
# original tree. i.e., fix
# the right child of predecessor
pre.right = None
yield current.data
current = current.right
# Driver code
"""
Constructed binary tree is
1
/
2     3
/
4     5
"""
root = Node( 1 ,
right = Node( 3 ),
left = Node( 2 ,
left = Node( 4 ),
right = Node( 5 )
)
)
for v in morris_traversal(root):
print (v, end = ' ' )
# This code is contributed by Naveen Aili
# updated by Elazar Gershuni


C#

// C# program to print inorder traversal
// without recursion and stack
using System;
/* A binary tree tNode has data,
pointer to left child
and a pointer to right child */
class BinaryTree {
tNode root;
public class tNode {
public int data;
public tNode left, right;
public tNode( int item)
{
data = item;
left = right = null ;
}
}
/* Function to traverse binary tree without
recursion and without stack */
void MorrisTraversal(tNode root)
{
tNode current, pre;
if (root == null )
return ;
current = root;
while (current != null )
{
if (current.left == null )
{
Console.Write(current.data + " " );
current = current.right;
}
else {
/* Find the inorder
predecessor of current
*/
pre = current.left;
while (pre.right != null
&& pre.right != current)
pre = pre.right;
/* Make current as right child
of its inorder predecessor */
if (pre.right == null )
{
pre.right = current;
current = current.left;
}
/* Revert the changes made in
if part to restore the original
tree i.e., fix the right child
of predecessor*/
else
{
pre.right = null ;
Console.Write(current.data + " " );
current = current.right;
} /* End of if condition pre->right == NULL
*/
} /* End of if condition current->left == NULL*/
} /* End of while */
}
// Driver code
public static void Main(String[] args)
{
/* Constructed binary tree is
1
/
2     3
/
4     5
*/
BinaryTree tree = new BinaryTree();
tree.root = new tNode(1);
tree.root.left = new tNode(2);
tree.root.right = new tNode(3);
tree.root.left.left = new tNode(4);
tree.root.left.right = new tNode(5);
tree.MorrisTraversal(tree.root);
}
}
// This code has been contributed
// by Arnab Kundu


Javascript

<script>
// JavaScript program to print inorder
// traversal without recursion
// and stack
/* A binary tree tNode has data,
a pointer to left child
and a pointer to right child */
class tNode
{
constructor(item)
{
this .data = item;
this .left = this .right = null ;
}
}
let root;
/* Function to traverse a
binary tree without recursion
and without stack */
function MorrisTraversal(root)
{
let current, pre;
if (root == null )
return ;
current = root;
while (current != null )
{
if (current.left == null )
{
document.write(current.data + " " );
current = current.right;
}
else {
/* Find the inorder
predecessor of current
*/
pre = current.left;
while (pre.right != null
&& pre.right != current)
pre = pre.right;
/* Make current as right
child of its
* inorder predecessor */
if (pre.right == null ) {
pre.right = current;
current = current.left;
}
/* Revert the changes made
in the 'if' part
to restore the original
tree i.e., fix
the right child of predecessor*/
else
{
pre.right = null ;
document.write(current.data + " " );
current = current.right;
} /* End of if condition pre->right == NULL
*/
} /* End of if condition current->left == NULL*/
} /* End of while */
}
// Driver Code
/* Constructed binary tree is
1
/
2      3
/
4     5
*/
root = new tNode(1);
root.left = new tNode(2);
root.right = new tNode(3);
root.left.left = new tNode(4);
root.left.right = new tNode(5);
MorrisTraversal(root);
// This code is contributed by avanitrachhadiya2155
</script>


输出

4 2 5 1 3 

时间复杂性: O(n)如果我们仔细观察,我们可以注意到树的每一条边最多经过三次。在最坏的情况下,会创建和删除与输入树数量相同的额外边。

参考资料: www.liacs。nl/~deutz/DS/september28。pdf www.scss。经颅多普勒。ie/学科/软件系统/../HughGibbons幻灯片。pdf 如果您在上述代码/算法中发现任何错误,或者想分享有关stack Morris有序树遍历的更多信息,请写评论。

© 版权声明
THE END
喜欢就支持一下吧
点赞15 分享