置换系数

排列是指将给定集合的所有成员排列成一个序列的过程。n个元素集合上的置换数由n,哪里“!”表示阶乘。

null

这个 置换系数 由P(n,k)表示,用于表示从一组n个元素中获得具有k个元素的有序子集的方法的数量。 从数学上来说,它是:

permu

图片来源: 维基 例如:

P(10, 2) = 90P(10, 3) = 720P(10, 0) = 1P(10, 1) = 10

也可以使用以下递归公式递归计算系数:

P(n, k) = P(n-1, k) + k* P(n-1, k-1)   

如果我们仔细观察,我们可以分析问题有重叠子结构,因此我们可以在这里应用动态规划。下面是一个实现相同想法的程序。

C

// A Dynamic Programming based
// solution that uses table P[][]
// to calculate the Permutation
// Coefficient
#include<bits/stdc++.h>
// Returns value of Permutation
// Coefficient P(n, k)
int permutationCoeff( int n, int k)
{
int P[n + 1][k + 1];
// Calculate value of Permutation
// Coefficient in bottom up manner
for ( int i = 0; i <= n; i++)
{
for ( int j = 0; j <= std::min(i, k); j++)
{
// Base Cases
if (j == 0)
P[i][j] = 1;
// Calculate value using
// previously stored values
else
P[i][j] = P[i - 1][j] +
(j * P[i - 1][j - 1]);
// This step is important
// as P(i,j)=0 for j>i
P[i][j + 1] = 0;
}
}
return P[n][k];
}
// Driver Code
int main()
{
int n = 10, k = 2;
printf ( "Value of P(%d, %d) is %d " ,
n, k, permutationCoeff(n, k));
return 0;
}


JAVA

// Java code for Dynamic Programming based
// solution that uses table P[][] to
// calculate the Permutation Coefficient
import java.io.*;
import java.math.*;
class GFG
{
// Returns value of Permutation
// Coefficient P(n, k)
static int permutationCoeff( int n,
int k)
{
int P[][] = new int [n + 2 ][k + 2 ];
// Calculate value of Permutation
// Coefficient in bottom up manner
for ( int i = 0 ; i <= n; i++)
{
for ( int j = 0 ;
j <= Math.min(i, k);
j++)
{
// Base Cases
if (j == 0 )
P[i][j] = 1 ;
// Calculate value using previously
// stored values
else
P[i][j] = P[i - 1 ][j] +
(j * P[i - 1 ][j - 1 ]);
// This step is important
// as P(i,j)=0 for j>i
P[i][j + 1 ] = 0 ;
}
}
return P[n][k];
}
// Driver Code
public static void main(String args[])
{
int n = 10 , k = 2 ;
System.out.println( "Value of P( " + n + "," + k + ")" +
" is " + permutationCoeff(n, k) );
}
}
// This code is contributed by Nikita Tiwari.


Python3

# A Dynamic Programming based
# solution that uses
# table P[][] to calculate the
# Permutation Coefficient
# Returns value of Permutation
# Coefficient P(n, k)
def permutationCoeff(n, k):
P = [[ 0 for i in range (k + 1 )]
for j in range (n + 1 )]
# Calculate value of Permutation
# Coefficient in
# bottom up manner
for i in range (n + 1 ):
for j in range ( min (i, k) + 1 ):
# Base cases
if (j = = 0 ):
P[i][j] = 1
# Calculate value using
# previously stored values
else :
P[i][j] = P[i - 1 ][j] + (
j * P[i - 1 ][j - 1 ])
# This step is important
# as P(i, j) = 0 for j>i
if (j < k):
P[i][j + 1 ] = 0
return P[n][k]
# Driver Code
n = 10
k = 2
print ( "Value of P(" , n, ", " , k, ") is " ,
permutationCoeff(n, k), sep = "")
# This code is contributed by Soumen Ghosh.


C#

// C# code for Dynamic Programming based
// solution that uses table P[][] to
// calculate the Permutation Coefficient
using System;
class GFG
{
// Returns value of Permutation
// Coefficient P(n, k)
static int permutationCoeff( int n,
int k)
{
int [,]P = new int [n + 2,k + 2];
// Calculate value of Permutation
// Coefficient in bottom up manner
for ( int i = 0; i <= n; i++)
{
for ( int j = 0;
j <= Math.Min(i, k);
j++)
{
// Base Cases
if (j == 0)
P[i,j] = 1;
// Calculate value using previously
// stored values
else
P[i,j] = P[i - 1,j] +
(j * P[i - 1,j - 1]);
// This step is important
// as P(i,j)=0 for j>i
P[i,j + 1] = 0;
}
}
return P[n,k];
}
// Driver Code
public static void Main()
{
int n = 10, k = 2;
Console.WriteLine( "Value of P( " + n +
"," + k + ")" + " is " +
permutationCoeff(n, k) );
}
}
// This code is contributed by anuj_67..


PHP

<?php
// A Dynamic Programming based
// solution that uses table P[][]
// to calculate the Permutation
// Coefficient
// Returns value of Permutation
// Coefficient P(n, k)
function permutationCoeff( $n , $k )
{
$P = array ( array ());
// Calculate value of Permutation
// Coefficient in bottom up manner
for ( $i = 0; $i <= $n ; $i ++)
{
for ( $j = 0; $j <= min( $i , $k ); $j ++)
{
// Base Cases
if ( $j == 0)
$P [ $i ][ $j ] = 1;
// Calculate value using
// previously stored values
else
$P [ $i ][ $j ] = $P [ $i - 1][ $j ] +
( $j * $P [ $i - 1][ $j - 1]);
// This step is important
// as P(i,j)=0 for j>i
$P [ $i ][ $j + 1] = 0;
}
}
return $P [ $n ][ $k ];
}
// Driver Code
$n = 10; $k = 2;
echo "Value of P(" , $n , " ," , $k , ") is " ,
permutationCoeff( $n , $k );
// This code is contributed by anuj_67.
?>


Javascript

<script>
// Javascript code for Dynamic Programming based
// solution that uses table P[][] to
// calculate the Permutation Coefficient
// Returns value of Permutation
// Coefficient P(n, k)
function permutationCoeff(n, k)
{
let P = new Array(n + 2);
for (let i = 0; i < n + 2; i++)
{
P[i] = new Array(k + 2);
}
// Calculate value of Permutation
// Coefficient in bottom up manner
for (let i = 0; i <= n; i++)
{
for (let j = 0; j <= Math.min(i, k); j++)
{
// Base Cases
if (j == 0)
P[i][j] = 1;
// Calculate value using previously
// stored values
else
P[i][j] = P[i - 1][j] + (j * P[i - 1][j - 1]);
// This step is important
// as P(i,j)=0 for j>i
P[i][j + 1] = 0;
}
}
return P[n][k];
}
let n = 10, k = 2;
document.write( "Value of P(" + n + "," + k + ")" + " is " + permutationCoeff(n, k) );
// This code is contributed by decode2207.
</script>


输出:

Value of P(10, 2) is 90 

在这里,我们可以看到时间复杂度是O(n*k),空间复杂度是O(n*k),因为程序使用辅助矩阵来存储结果。

我们能按时完成吗? 假设我们维护一个一维数组来计算n的阶乘。我们可以使用计算出的阶乘值并应用公式P(n,k)=n!/(n-k)!。下面是一个说明相同概念的程序。

C++

// A O(n) solution that uses
// table fact[] to calculate
// the Permutation Coefficient
#include<bits/stdc++.h>
using namespace std;
// Returns value of Permutation
// Coefficient P(n, k)
int permutationCoeff( int n, int k)
{
int fact[n + 1];
// Base case
fact[0] = 1;
// Calculate value
// factorials up to n
for ( int i = 1; i <= n; i++)
fact[i] = i * fact[i - 1];
// P(n,k) = n! / (n - k)!
return fact[n] / fact[n - k];
}
// Driver Code
int main()
{
int n = 10, k = 2;
cout << "Value of P(" << n << ", "
<< k << ") is "
<< permutationCoeff(n, k);
return 0;
}
// This code is contributed by shubhamsingh10


C

// A O(n) solution that uses
// table fact[] to calculate
// the Permutation Coefficient
#include<bits/stdc++.h>
// Returns value of Permutation
// Coefficient P(n, k)
int permutationCoeff( int n, int k)
{
int fact[n + 1];
// base case
fact[0] = 1;
// Calculate value
// factorials up to n
for ( int i = 1; i <= n; i++)
fact[i] = i * fact[i - 1];
// P(n,k) = n! / (n - k)!
return fact[n] / fact[n - k];
}
// Driver Code
int main()
{
int n = 10, k = 2;
printf ( "Value of P(%d, %d) is %d " ,
n, k, permutationCoeff(n, k) );
return 0;
}


JAVA

// A O(n) solution that uses
// table fact[] to calculate
// the Permutation Coefficient
import java .io.*;
public class GFG {
// Returns value of Permutation
// Coefficient P(n, k)
static int permutationCoeff( int n,
int k)
{
int []fact = new int [n+ 1 ];
// base case
fact[ 0 ] = 1 ;
// Calculate value
// factorials up to n
for ( int i = 1 ; i <= n; i++)
fact[i] = i * fact[i - 1 ];
// P(n,k) = n! / (n - k)!
return fact[n] / fact[n - k];
}
// Driver Code
static public void main (String[] args)
{
int n = 10 , k = 2 ;
System.out.println( "Value of"
+ " P( " + n + ", " + k + ") is "
+ permutationCoeff(n, k) );
}
}
// This code is contributed by anuj_67.


Python3

# A O(n) solution that uses
# table fact[] to calculate
# the Permutation Coefficient
# Returns value of Permutation
# Coefficient P(n, k)
def permutationCoeff(n, k):
fact = [ 0 for i in range (n + 1 )]
# base case
fact[ 0 ] = 1
# Calculate value
# factorials up to n
for i in range ( 1 , n + 1 ):
fact[i] = i * fact[i - 1 ]
# P(n, k) = n!/(n-k)!
return int (fact[n] / fact[n - k])
# Driver Code
n = 10
k = 2
print ( "Value of P(" , n, ", " , k, ") is " ,
permutationCoeff(n, k), sep = "")
# This code is contributed
# by Soumen Ghosh


C#

// A O(n) solution that uses
// table fact[] to calculate
// the Permutation Coefficient
using System;
public class GFG {
// Returns value of Permutation
// Coefficient P(n, k)
static int permutationCoeff( int n,
int k)
{
int []fact = new int [n+1];
// base case
fact[0] = 1;
// Calculate value
// factorials up to n
for ( int i = 1; i <= n; i++)
fact[i] = i * fact[i - 1];
// P(n,k) = n! / (n - k)!
return fact[n] / fact[n - k];
}
// Driver Code
static public void Main ()
{
int n = 10, k = 2;
Console.WriteLine( "Value of"
+ " P( " + n + ", " + k + ") is "
+ permutationCoeff(n, k) );
}
}
// This code is contributed by anuj_67.


PHP

<?php
// A O(n) Solution that
// uses table fact[] to
// calculate the Permutation
// Coefficient
// Returns value of Permutation
// Coefficient P(n, k)
function permutationCoeff( $n , $k )
{
$fact = array ();
// base case
$fact [0] = 1;
// Calculate value
// factorials up to n
for ( $i = 1; $i <= $n ; $i ++)
$fact [ $i ] = $i * $fact [ $i - 1];
// P(n,k)= n!/(n-k)!
return $fact [ $n ] / $fact [ $n - $k ];
}
// Driver Code
$n = 10;
$k = 2;
echo "Value of P(" , $n , " " , $k , ") is " ,
permutationCoeff( $n , $k ) ;
// This code is contributed by anuj_67.
?>


Javascript

<script>
// A O(n) solution that uses
// table fact[] to calculate
// the Permutation Coefficient
// Returns value of Permutation
// Coefficient P(n, k)
function permutationCoeff(n, k)
{
let fact = new Array(n+1);
// base case
fact[0] = 1;
// Calculate value
// factorials up to n
for (let i = 1; i <= n; i++)
fact[i] = i * fact[i - 1];
// P(n,k) = n! / (n - k)!
return parseInt(fact[n] / fact[n - k], 10);
}
let n = 10, k = 2;
document.write( "Value of"
+ " P(" + n + ", " + k + ") is "
+ permutationCoeff(n, k) );
</script>


输出:

Value of P(10, 2) is 90 

O(n)时间和O(1)额外空间解

C++

// A O(n) time and O(1) extra
// space solution to calculate
// the Permutation Coefficient
#include <iostream>
using namespace std;
int PermutationCoeff( int n, int k)
{
int P = 1;
// Compute n*(n-1)*(n-2)....(n-k+1)
for ( int i = 0; i < k; i++)
P *= (n-i) ;
return P;
}
// Driver Code
int main()
{
int n = 10, k = 2;
cout << "Value of P(" << n << ", " << k
<< ") is " << PermutationCoeff(n, k);
return 0;
}


JAVA

// A O(n) time and O(1) extra
// space solution to calculate
// the Permutation Coefficient
import java.io.*;
class GFG
{
static int PermutationCoeff( int n,
int k)
{
int Fn = 1 , Fk = 1 ;
// Compute n! and (n-k)!
for ( int i = 1 ; i <= n; i++)
{
Fn *= i;
if (i == n - k)
Fk = Fn;
}
int coeff = Fn / Fk;
return coeff;
}
// Driver Code
public static void main(String args[])
{
int n = 10 , k = 2 ;
System.out.println( "Value of P( " + n + "," +
k + ") is " +
PermutationCoeff(n, k) );
}
}
// This code is contributed by Nikita Tiwari.


C#

// A O(n) time and O(1) extra
// space solution to calculate
// the Permutation Coefficient
using System;
class GFG {
static int PermutationCoeff( int n,
int k)
{
int Fn = 1, Fk = 1;
// Compute n! and (n-k)!
for ( int i = 1; i <= n; i++)
{
Fn *= i;
if (i == n - k)
Fk = Fn;
}
int coeff = Fn / Fk;
return coeff;
}
// Driver Code
public static void Main()
{
int n = 10, k = 2;
Console.WriteLine( "Value of P( "
+ n + "," + k + ") is "
+ PermutationCoeff(n, k) );
}
}
// This code is contributed by anuj_67.


PHP

<?php
// A O(n) time and O(1) extra
// space PHP solution to calculate
// the Permutation Coefficient
function PermutationCoeff( $n , $k )
{
$Fn = 1; $Fk ;
// Compute n! and (n-k)!
for ( $i = 1; $i <= $n ; $i ++)
{
$Fn *= $i ;
if ( $i == $n - $k )
$Fk = $Fn ;
}
$coeff = $Fn / $Fk ;
return $coeff ;
}
// Driver Code
$n = 10; $k = 2;
echo "Value of P(" , $n , ", " , $k , ")
is " , PermutationCoeff( $n , $k );
// This code is contributed by anuj_67.
?>


Javascript

<script>
// A O(n) time and O(1) extra
// space solution to calculate
// the Permutation Coefficient
function PermutationCoeff(n, k)
{
let P = 1;
// Compute n*(n-1)*(n-2)....(n-k+1)
for (let i = 0; i < k; i++)
P *= (n - i);
return P;
}
// Driver code
let n = 10, k = 2;
document.write( "Value of P(" + n +
", " + k + ") is " +
PermutationCoeff(n, k));
// This code is contributed by divyesh072019
</script>


Python3

# A O(n) solution that uses
# table fact[] to calculate
# the Permutation Coefficient
# Returns value of Permutation
# Coefficient P(n, k)
def permutationCoeff(n, k):
f = 1
for i in range (k): #P(n,k)=n*(n-1)*(n-2)*....(n-k-1)
f * = (n - i)
return f #This code is contributed by Suyash Saxena
# Driver Code
n = 10
k = 2
print ( "Value of P(" , n, ", " , k, ") is " ,
permutationCoeff(n, k))


输出:

Value of P(10, 2) is 90 

感谢希瓦·库马尔提出这个解决方案。 本文由 阿什图什·库马尔 。如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请发表评论

© 版权声明
THE END
喜欢就支持一下吧
点赞15 分享