无需递归或堆栈的有序非线程二叉树遍历

我们讨论过 基于线程的Morris遍历 .如果我们有可用的父指针,我们可以在没有线程的情况下进行有序遍历吗?

null
Input: Root of Below Tree [Every node of        tree has parent pointer also]        10      /         5     100           /            80  120 Output: 5 10 80 100 120The code should not extra space (No Recursionand stack)

在有序遍历中,我们遵循“左根-右根”。我们可以用左右指针移动到儿童身上。一旦一个节点被访问,我们也需要移动到父节点。例如,在上面的树中,我们需要在打印5之后移动到10。为此,我们使用父指针。下面是算法。

1. Initialize current node as root2. Initialize a flag: leftdone = false;3. Do following while root is not NULL     a) If leftdone is false, set current node as leftmost        child of node.      b) Mark leftdone as true and print current node.     c) If right child of current nodes exists, set current        as right child and set leftdone as false.     d) Else If parent exists, If current node is left child        of its parent, set current node as parent.         If current node is right child, keep moving to ancestors        using parent pointer while current node is right child        of its parent.       e) Else break (We have reached back to root)

插图:

Let us consider below tree for illustration.        10      /         5     100           /            80  120 Initialize: Current node = 10, leftdone = falseSince leftdone is false, we move to 5 (3.a), print itand set leftdone = true.Now we move to parent of 5 (3.d). Node 10 is printed because leftdone is true.We move to right of 10 and set leftdone as false (3.c)Now current node is 100. Since leftdone is false, we moveto 80 (3.a) and set leftdone as true.  We print current node 80 and move back to parent 100 (3.d).  Since leftdoneis true, we print current node 100. Right of 100 exists, so we move to 120 (3.c).   We printcurrent node 120.Since 120 is right child of its parent we keep moving to parentwhile parent is right child of its parent.  We reach root. Sowe break the loop and stop

下面是上述算法的实现。请注意,该实现使用二叉搜索树而不是二叉树。我们可以使用相同的功能 顺序() 对于二叉树也是如此。在下面的代码中使用二叉搜索树的原因是,很容易用父指针构造二叉搜索树,也很容易测试结果(在BST中,按顺序遍历总是排序的)。

C++

// C++ program to print inorder traversal of a Binary Search
// Tree (BST) without recursion and stack
#include <bits/stdc++.h>
using namespace std;
// BST Node
struct Node
{
Node *left, *right, *parent;
int key;
};
// A utility function to create a new BST node
Node *newNode( int item)
{
Node *temp = new Node;
temp->key = item;
temp->parent = temp->left = temp->right = NULL;
return temp;
}
/* A utility function to insert a new node with
given key in BST */
Node *insert(Node *node, int key)
{
/* If the tree is empty, return a new node */
if (node == NULL) return newNode(key);
/* Otherwise, recur down the tree */
if (key < node->key)
{
node->left  = insert(node->left, key);
node->left->parent = node;
}
else if (key > node->key)
{
node->right = insert(node->right, key);
node->right->parent = node;
}
/* return the (unchanged) node pointer */
return node;
}
// Function to print inorder traversal using parent
// pointer
void inorder(Node *root)
{
bool leftdone = false ;
// Start traversal from root
while (root)
{
// If left child is not traversed, find the
// leftmost child
if (!leftdone)
{
while (root->left)
root = root->left;
}
// Print root's data
printf ( "%d " , root->key);
// Mark left as done
leftdone = true ;
// If right child exists
if (root->right)
{
leftdone = false ;
root = root->right;
}
// If right child doesn't exist, move to parent
else if (root->parent)
{
// If this node is right child of its parent,
// visit parent's parent first
while (root->parent &&
root == root->parent->right)
root = root->parent;
if (!root->parent)
break ;
root = root->parent;
}
else break ;
}
}
int main( void )
{
Node * root = NULL;
root = insert(root, 24);
root = insert(root, 27);
root = insert(root, 29);
root = insert(root, 34);
root = insert(root, 14);
root = insert(root, 4);
root = insert(root, 10);
root = insert(root, 22);
root = insert(root, 13);
root = insert(root, 3);
root = insert(root, 2);
root = insert(root, 6);
printf ( "Inorder traversal is " );
inorder(root);
return 0;
}


JAVA

/* Java program to print inorder traversal of a Binary Search Tree
without recursion and stack */
// BST node
class Node
{
int key;
Node left, right, parent;
public Node( int key)
{
this .key = key;
left = right = parent = null ;
}
}
class BinaryTree
{
Node root;
/* A utility function to insert a new node with
given key in BST */
Node insert(Node node, int key)
{
/* If the tree is empty, return a new node */
if (node == null )
return new Node(key);
/* Otherwise, recur down the tree */
if (key < node.key)
{
node.left = insert(node.left, key);
node.left.parent = node;
}
else if (key > node.key)
{
node.right = insert(node.right, key);
node.right.parent = node;
}
/* return the (unchanged) node pointer */
return node;
}
// Function to print inorder traversal using parent
// pointer
void inorder(Node root)
{
boolean leftdone = false ;
// Start traversal from root
while (root != null )
{
// If left child is not traversed, find the
// leftmost child
if (!leftdone)
{
while (root.left != null )
{
root = root.left;
}
}
// Print root's data
System.out.print(root.key + " " );
// Mark left as done
leftdone = true ;
// If right child exists
if (root.right != null )
{
leftdone = false ;
root = root.right;
}
// If right child doesn't exist, move to parent
else if (root.parent != null )
{
// If this node is right child of its parent,
// visit parent's parent first
while (root.parent != null
&& root == root.parent.right)
root = root.parent;
if (root.parent == null )
break ;
root = root.parent;
}
else
break ;
}
}
public static void main(String[] args)
{
BinaryTree tree = new BinaryTree();
tree.root = tree.insert(tree.root, 24 );
tree.root = tree.insert(tree.root, 27 );
tree.root = tree.insert(tree.root, 29 );
tree.root = tree.insert(tree.root, 34 );
tree.root = tree.insert(tree.root, 14 );
tree.root = tree.insert(tree.root, 4 );
tree.root = tree.insert(tree.root, 10 );
tree.root = tree.insert(tree.root, 22 );
tree.root = tree.insert(tree.root, 13 );
tree.root = tree.insert(tree.root, 3 );
tree.root = tree.insert(tree.root, 2 );
tree.root = tree.insert(tree.root, 6 );
System.out.println( "Inorder traversal is " );
tree.inorder(tree.root);
}
}
// This code has been contributed by Mayank Jaiswal(mayank_24)


Python3

# Python3 program to print inorder traversal of a
# Binary Search Tree (BST) without recursion and stack
# A utility function to create a new BST node
class newNode:
def __init__( self , item):
self .key = item
self .parent = self .left = self .right = None
# A utility function to insert a new
# node with given key in BST
def insert(node, key):
# If the tree is empty, return a new node
if node = = None :
return newNode(key)
# Otherwise, recur down the tree
if key < node.key:
node.left = insert(node.left, key)
node.left.parent = node
elif key > node.key:
node.right = insert(node.right, key)
node.right.parent = node
# return the (unchanged) node pointer
return node
# Function to print inorder traversal
# using parent pointer
def inorder(root):
leftdone = False
# Start traversal from root
while root:
# If left child is not traversed,
# find the leftmost child
if leftdone = = False :
while root.left:
root = root.left
# Print root's data
print (root.key, end = " " )
# Mark left as done
leftdone = True
# If right child exists
if root.right:
leftdone = False
root = root.right
# If right child doesn't exist, move to parent
elif root.parent:
# If this node is right child of its
# parent, visit parent's parent first
while root.parent and root = = root.parent.right:
root = root.parent
if root.parent = = None :
break
root = root.parent
else :
break
# Driver Code
if __name__ = = '__main__' :
root = None
root = insert(root, 24 )
root = insert(root, 27 )
root = insert(root, 29 )
root = insert(root, 34 )
root = insert(root, 14 )
root = insert(root, 4 )
root = insert(root, 10 )
root = insert(root, 22 )
root = insert(root, 13 )
root = insert(root, 3 )
root = insert(root, 2 )
root = insert(root, 6 )
print ( "Inorder traversal is " )
inorder(root)
# This code is contributed by PranchalK


C#

// C# program to print inorder traversal
// of a Binary Search Tree without
// recursion and stack
using System;
// BST node
class Node
{
public int key;
public Node left, right, parent;
public Node( int key)
{
this .key = key;
left = right = parent = null ;
}
}
class BinaryTree
{
Node root;
/* A utility function to insert a
new node with given key in BST */
Node insert(Node node, int key)
{
/* If the tree is empty,
return a new node */
if (node == null )
return new Node(key);
/* Otherwise, recur down the tree */
if (key < node.key)
{
node.left = insert(node.left, key);
node.left.parent = node;
}
else if (key > node.key)
{
node.right = insert(node.right, key);
node.right.parent = node;
}
/* return the (unchanged) node pointer */
return node;
}
// Function to print inorder traversal
// using parent pointer
void inorder(Node root)
{
Boolean leftdone = false ;
// Start traversal from root
while (root != null )
{
// If left child is not traversed,
// find the leftmost child
if (!leftdone)
{
while (root.left != null )
{
root = root.left;
}
}
// Print root's data
Console.Write(root.key + " " );
// Mark left as done
leftdone = true ;
// If right child exists
if (root.right != null )
{
leftdone = false ;
root = root.right;
}
// If right child doesn't exist,
// move to parent
else if (root.parent != null )
{
// If this node is right child
// of its parent, visit parent's
// parent first
while (root.parent != null &&
root == root.parent.right)
root = root.parent;
if (root.parent == null )
break ;
root = root.parent;
}
else
break ;
}
}
// Driver Code
static public void Main(String[] args)
{
BinaryTree tree = new BinaryTree();
tree.root = tree.insert(tree.root, 24);
tree.root = tree.insert(tree.root, 27);
tree.root = tree.insert(tree.root, 29);
tree.root = tree.insert(tree.root, 34);
tree.root = tree.insert(tree.root, 14);
tree.root = tree.insert(tree.root, 4);
tree.root = tree.insert(tree.root, 10);
tree.root = tree.insert(tree.root, 22);
tree.root = tree.insert(tree.root, 13);
tree.root = tree.insert(tree.root, 3);
tree.root = tree.insert(tree.root, 2);
tree.root = tree.insert(tree.root, 6);
Console.WriteLine( "Inorder traversal is " );
tree.inorder(tree.root);
}
}
// This code is contributed by Arnab Kundu


Javascript

<script>
/* javascript program to print inorder traversal of a Binary Search Tree
without recursion and stack */
// BST node
class Node {
constructor(key) {
this .key = key;
this .left = this .right = this .parent = null ;
}
}
var root = null ;
/*
* A utility function to insert a new node with given key in BST
*/
function insert(node , key) {
/* If the tree is empty, return a new node */
if (node == null )
return new Node(key);
/* Otherwise, recur down the tree */
if (key < node.key) {
node.left = insert(node.left, key);
node.left.parent = node;
} else if (key > node.key) {
node.right = insert(node.right, key);
node.right.parent = node;
}
/* return the (unchanged) node pointer */
return node;
}
// Function to print inorder traversal using parent
// pointer
function inorder(root) {
var leftdone = false ;
// Start traversal from root
while (root != null ) {
// If left child is not traversed, find the
// leftmost child
if (!leftdone) {
while (root.left != null ) {
root = root.left;
}
}
// Print root's data
document.write(root.key + " " );
// Mark left as done
leftdone = true ;
// If right child exists
if (root.right != null ) {
leftdone = false ;
root = root.right;
}
// If right child doesn't exist, move to parent
else if (root.parent != null ) {
// If this node is right child of its parent,
// visit parent's parent first
while (root.parent != null && root == root.parent.right)
root = root.parent;
if (root.parent == null )
break ;
root = root.parent;
} else
break ;
}
}
root = insert(root, 24);
root = insert(root, 27);
root = insert(root, 29);
root = insert(root, 34);
root = insert(root, 14);
root = insert(root, 4);
root = insert(root, 10);
root = insert(root, 22);
root = insert(root, 13);
root = insert(root, 3);
root = insert(root, 2);
root = insert(root, 6);
document.write( "Inorder traversal is " );
inorder(root);
// This code contributed by aashish1995
</script>


输出:

Inorder traversal is 2 3 4 6 10 13 14 22 24 27 29 34

本文由 里希希伯 。如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请发表评论

© 版权声明
THE END
喜欢就支持一下吧
点赞8 分享