给定一个“m x n”矩阵,计算从左上角到达右下角的路径数,允许最大转弯数为k。
null
什么是转弯? 如果我们沿着行移动,现在沿着列移动,移动被认为是转弯。或者我们沿着列移动,现在沿着行移动。
There are two possible scenarios when a turn can occur at point (i, j): Turns Right: (i-1, j) -> (i, j) -> (i, j+1) Down Right Turns Down: (i, j-1) -> (i, j) -> (i+1, j) Right Down
例如:
Input: m = 3, n = 3, k = 2 Output: 4 See below diagram for four paths with maximum 2 turns. Input: m = 3, n = 3, k = 1 Output: 2
我们强烈建议您尽量减少浏览器,并先自己尝试。 这个问题可以使用下面的递归公式进行递归计算。
countPaths(i, j, k): Count of paths to reach (i,j) from (0, 0) countPathsDir(i, j, k, 0): Count of paths if we reach (i, j) along row. countPathsDir(i, j, k, 1): Count of paths if we reach (i, j) along column. The fourth parameter in countPathsDir() indicates direction. Value of countPaths() can be written as: countPaths(i, j, k) = countPathsDir(i, j, k, 0) + countPathsDir(i, j, k, 1) And value of countPathsDir() can be recursively defined as: // Base cases // If current direction is along row If (d == 0) // Count paths for two cases // 1) We reach here through previous row. // 2) We reach here through previous column, so number of // turns k reduce by 1. countPathsDir(i, j, k, d) = countPathsUtil(i, j-1, k, d) + countPathsUtil(i-1, j, k-1, !d); // If current direction is along column Else // Similar to above countPathsDir(i, j, k, d) = countPathsUtil(i-1, j, k, d) + countPathsUtil(i, j-1, k-1, !d);
我们可以用动态规划在多项式时间内解决这个问题。这个想法是使用一个四维表dp[m][n][k][d],其中m是行数,n是列数,k是允许的圈数,d是方向。
下面是基于动态编程的实现。
C++
// C++ program to count number of paths with maximum // k turns allowed #include<bits/stdc++.h> using namespace std; #define MAX 100 // table to store results of subproblems int dp[MAX][MAX][MAX][2]; // Returns count of paths to reach (i, j) from (0, 0) // using at-most k turns. d is current direction // d = 0 indicates along row, d = 1 indicates along // column. int countPathsUtil( int i, int j, int k, int d) { // If invalid row or column indexes if (i < 0 || j < 0) return 0; // If current cell is top left itself if (i == 0 && j == 0) return 1; // If 0 turns left if (k == 0) { // If direction is row, then we can reach here // only if direction is row and row is 0. if (d == 0 && i == 0) return 1; // If direction is column, then we can reach here // only if direction is column and column is 0. if (d == 1 && j == 0) return 1; return 0; } // If this subproblem is already evaluated if (dp[i][j][k][d] != -1) return dp[i][j][k][d]; // If current direction is row, then count paths for two cases // 1) We reach here through previous row. // 2) We reach here through previous column, so number of // turns k reduce by 1. if (d == 0) return dp[i][j][k][d] = countPathsUtil(i, j-1, k, d) + countPathsUtil(i-1, j, k-1, !d); // Similar to above if direction is column return dp[i][j][k][d] = countPathsUtil(i-1, j, k, d) + countPathsUtil(i, j-1, k-1, !d); } // This function mainly initializes 'dp' array as -1 and calls // countPathsUtil() int countPaths( int i, int j, int k) { // If (0, 0) is target itself if (i == 0 && j == 0) return 1; // Initialize 'dp' array memset (dp, -1, sizeof dp); // Recur for two cases: moving along row and along column return countPathsUtil(i-1, j, k, 1) + // Moving along row countPathsUtil(i, j-1, k, 0); // Moving along column } // Driver program int main() { int m = 3, n = 3, k = 2; cout << "Number of paths is " << countPaths(m-1, n-1, k) << endl; return 0; } |
JAVA
// Java program to count number of paths // with maximum k turns allowed import java.util.*; class GFG { static int MAX = 100 ; // table to store results of subproblems static int [][][][]dp = new int [MAX][MAX][MAX][ 2 ]; // Returns count of paths to reach (i, j) from (0, 0) // using at-most k turns. d is current direction // d = 0 indicates along row, d = 1 indicates along // column. static int countPathsUtil( int i, int j, int k, int d) { // If invalid row or column indexes if (i < 0 || j < 0 ) return 0 ; // If current cell is top left itself if (i == 0 && j == 0 ) return 1 ; // If 0 turns left if (k == 0 ) { // If direction is row, then we can reach here // only if direction is row and row is 0. if (d == 0 && i == 0 ) return 1 ; // If direction is column, then we can reach here // only if direction is column and column is 0. if (d == 1 && j == 0 ) return 1 ; return 0 ; } // If this subproblem is already evaluated if (dp[i][j][k][d] != - 1 ) return dp[i][j][k][d]; // If current direction is row, // then count paths for two cases // 1) We reach here through previous row. // 2) We reach here through previous column, // so number of turns k reduce by 1. if (d == 0 ) return dp[i][j][k][d] = countPathsUtil(i, j - 1 , k, d) + countPathsUtil(i - 1 , j, k - 1 , d == 1 ? 0 : 1 ); // Similar to above if direction is column return dp[i][j][k][d] = countPathsUtil(i - 1 , j, k, d) + countPathsUtil(i, j - 1 , k - 1 , d == 1 ? 0 : 1 ); } // This function mainly initializes 'dp' array // as -1 and calls countPathsUtil() static int countPaths( int i, int j, int k) { // If (0, 0) is target itself if (i == 0 && j == 0 ) return 1 ; // Initialize 'dp' array for ( int p = 0 ; p < MAX; p++) { for ( int q = 0 ; q < MAX; q++) { for ( int r = 0 ; r < MAX; r++) for ( int s = 0 ; s < 2 ; s++) dp[p][q][r][s] = - 1 ; } } // Recur for two cases: moving along row and along column return countPathsUtil(i - 1 , j, k, 1 ) + // Moving along row countPathsUtil(i, j - 1 , k, 0 ); // Moving along column } // Driver Code public static void main(String[] args) { int m = 3 , n = 3 , k = 2 ; System.out.println( "Number of paths is " + countPaths(m - 1 , n - 1 , k)); } } // This code is contributed by Princi Singh |
Python3
# Python3 program to count number of paths # with maximum k turns allowed MAX = 100 # table to store results of subproblems dp = [[[[ - 1 for col in range ( 2 )] for col in range ( MAX )] for row in range ( MAX )] for row in range ( MAX )] # Returns count of paths to reach # (i, j) from (0, 0) using at-most k turns. # d is current direction, d = 0 indicates # along row, d = 1 indicates along column. def countPathsUtil(i, j, k, d): # If invalid row or column indexes if (i < 0 or j < 0 ): return 0 # If current cell is top left itself if (i = = 0 and j = = 0 ): return 1 # If 0 turns left if (k = = 0 ): # If direction is row, then we can reach here # only if direction is row and row is 0. if (d = = 0 and i = = 0 ): return 1 # If direction is column, then we can reach here # only if direction is column and column is 0. if (d = = 1 and j = = 0 ): return 1 return 0 # If this subproblem is already evaluated if (dp[i][j][k][d] ! = - 1 ): return dp[i][j][k][d] # If current direction is row, # then count paths for two cases # 1) We reach here through previous row. # 2) We reach here through previous column, # so number of turns k reduce by 1. if (d = = 0 ): dp[i][j][k][d] = countPathsUtil(i, j - 1 , k, d) + countPathsUtil(i - 1 , j, k - 1 , not d) return dp[i][j][k][d] # Similar to above if direction is column dp[i][j][k][d] = countPathsUtil(i - 1 , j, k, d) + countPathsUtil(i, j - 1 , k - 1 , not d) return dp[i][j][k][d] # This function mainly initializes 'dp' array # as -1 and calls countPathsUtil() def countPaths(i, j, k): # If (0, 0) is target itself if (i = = 0 and j = = 0 ): return 1 # Recur for two cases: moving along row # and along column return countPathsUtil(i - 1 , j, k, 1 ) + countPathsUtil(i, j - 1 , k, 0 ) # Driver Code if __name__ = = '__main__' : m = 3 n = 3 k = 2 print ( "Number of paths is" , countPaths(m - 1 , n - 1 , k)) # This code is contributed by Ashutosh450 |
C#
// C# program to count number of paths // with maximum k turns allowed using System; class GFG { static int MAX = 100; // table to store to store results of subproblems static int [,,,]dp = new int [MAX, MAX, MAX, 2]; // Returns count of paths to reach (i, j) from (0, 0) // using at-most k turns. d is current direction // d = 0 indicates along row, d = 1 indicates along // column. static int countPathsUtil( int i, int j, int k, int d) { // If invalid row or column indexes if (i < 0 || j < 0) return 0; // If current cell is top left itself if (i == 0 && j == 0) return 1; // If 0 turns left if (k == 0) { // If direction is row, then we can reach here // only if direction is row and row is 0. if (d == 0 && i == 0) return 1; // If direction is column, then we can reach here // only if direction is column and column is 0. if (d == 1 && j == 0) return 1; return 0; } // If this subproblem is already evaluated if (dp[i, j, k, d] != -1) return dp[i, j, k, d]; // If current direction is row, // then count paths for two cases // 1) We reach here through previous row. // 2) We reach here through previous column, // so number of turns k reduce by 1. if (d == 0) return dp[i, j, k, d] = countPathsUtil(i, j - 1, k, d) + countPathsUtil(i - 1, j, k - 1, d == 1 ? 0 : 1); // Similar to above if direction is column return dp[i, j, k, d] = countPathsUtil(i - 1, j, k, d) + countPathsUtil(i, j - 1, k - 1, d == 1 ? 0 : 1); } // This function mainly initializes 'dp' array // as -1 and calls countPathsUtil() static int countPaths( int i, int j, int k) { // If (0, 0) is target itself if (i == 0 && j == 0) return 1; // Initialize 'dp' array for ( int p = 0; p < MAX; p++) { for ( int q = 0; q < MAX; q++) { for ( int r = 0; r < MAX; r++) for ( int s = 0; s < 2; s++) dp[p, q, r, s] = -1; } } // Recur for two cases: moving along row and along column return countPathsUtil(i - 1, j, k, 1) + // Moving along row countPathsUtil(i, j - 1, k, 0); // Moving along column } // Driver Code public static void Main(String[] args) { int m = 3, n = 3, k = 2; Console.WriteLine( "Number of paths is " + countPaths(m - 1, n - 1, k)); } } // This code is contributed by PrinciRaj1992 |
输出:
Number of paths is 4
上述解的时间复杂度为O(m*n*k)
感谢Gaurav Ahirwar提出这个解决方案。
如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END