Python统计|方差()

统计数字 该模块提供了非常强大的工具,可以用来计算任何与统计相关的数据。 方差() 就是这样一种功能。此函数有助于计算数据样本的方差(样本是填充数据的子集)。 方差() 函数只应在需要计算样本方差时使用。还有另一个函数称为pvariance(),用于计算整个群体的方差。 在纯统计学中,方差是变量与其均值的平方偏差。基本上,它根据随机数据的平均值或中值来衡量随机数据在集合中的传播。方差的低值表示数据聚集在一起,并且没有广泛分布,而高值表示给定集合中的数据比平均值分布更广。 方差是科学中的一个重要工具,在科学中,数据的统计分析很常见。它是给定数据集标准偏差的平方,也称为分布的第二中心矩。它通常由 s^{2}, sigma ^{2}, operatorname {Var} (X) 在纯统计中。 方差通过以下公式计算:

null

它是通过平方的平均值减去平方的平均值来计算的 operatorname {Var} (X)=operatorname {E} left[(X-mu )^{2}
ight]

语法: 方差([数据],xbar) 参数: [数据]: 具有实数的可数。 xbar(可选): 将数据集的实际平均值作为值。 返回类型: 返回作为参数传递的值的实际方差。 例外情况: 统计误差 对于作为参数传递的小于2个值的数据集引发。 当提供的值为 xbar 与数据集的实际平均值不匹配。

代码#1:

Python3

# Python code to demonstrate the working of
# variance() function of Statistics Module
# Importing Statistics module
import statistics
# Creating a sample of data
sample = [ 2.74 , 1.23 , 2.63 , 2.22 , 3 , 1.98 ]
# Prints variance of the sample set
# Function will automatically calculate
# it's mean and set it as xbar
print ( "Variance of sample set is % s"
% (statistics.variance(sample)))


输出:

Variance of sample set is 0.40924

代码#2: 在一系列数据类型上演示variance()

Python3

# Python code to demonstrate variance()
# function on varying range of data-types
# importing statistics module
from statistics import variance
# importing fractions as parameter values
from fractions import Fraction as fr
# tuple of a set of positive integers
# numbers are spread apart but not very much
sample1 = ( 1 , 2 , 5 , 4 , 8 , 9 , 12 )
# tuple of a set of negative integers
sample2 = ( - 2 , - 4 , - 3 , - 1 , - 5 , - 6 )
# tuple of a set of positive and negative numbers
# data-points are spread apart considerably
sample3 = ( - 9 , - 1 , - 0 , 2 , 1 , 3 , 4 , 19 )
# tuple of a set of fractional numbers
sample4 = (fr( 1 , 2 ), fr( 2 , 3 ), fr( 3 , 4 ),
fr( 5 , 6 ), fr( 7 , 8 ))
# tuple of a set of floating point values
sample5 = ( 1.23 , 1.45 , 2.1 , 2.2 , 1.9 )
# Print the variance of each samples
print ( "Variance of Sample1 is % s " % (variance(sample1)))
print ( "Variance of Sample2 is % s " % (variance(sample2)))
print ( "Variance of Sample3 is % s " % (variance(sample3)))
print ( "Variance of Sample4 is % s " % (variance(sample4)))
print ( "Variance of Sample5 is % s " % (variance(sample5)))


输出:

Variance of Sample 1 is 15.80952380952381 Variance of Sample 2 is 3.5 Variance of Sample 3 is 61.125 Variance of Sample 4 is 1/45 Variance of Sample 5 is 0.17613000000000006 

代码#3: 演示xbar参数的使用

Python3

# Python code to demonstrate
# the use of xbar parameter
# Importing statistics module
import statistics
# creating a sample list
sample = ( 1 , 1.3 , 1.2 , 1.9 , 2.5 , 2.2 )
# calculating the mean of sample set
m = statistics.mean(sample)
# calculating the variance of sample set
print ( "Variance of Sample set is % s"
% (statistics.variance(sample, xbar = m)))


输出:

Variance of Sample set is 0.3656666666666667

代码#4: 演示当 xbar 与平均值/平均值不同

Python3

# Python code to demonstrate the error caused
# when garbage value of xbar is entered
# Importing statistics module
import statistics
# creating a sample list
sample = ( 1 , 1.3 , 1.2 , 1.9 , 2.5 , 2.2 )
# calculating the mean of sample set
m = statistics.mean(sample)
# Actual value of mean after calculation
# comes out to 1.6833333333333333
# But to demonstrate xbar error let's enter
# -100 as the value for xbar parameter
print (statistics.variance(sample, xbar = - 100 ))


输出:

0.3656666666663053

注:其精度与代码#3中的输出不同 代码#4: 显示统计错误

Python3

# Python code to demonstrate StatisticsError
# importing Statistics module
import statistics
# creating an empty data-srt
sample = []
# will raise Statistics Error
print (statistics.variance(sample))


输出:

Traceback (most recent call last):  File "/home/64bf6d80f158b65d2b75c894d03a7779.py", line 10, in     print(statistics.variance(sample))  File "/usr/lib/python3.5/statistics.py", line 555, in variance    raise StatisticsError('variance requires at least two data points')statistics.StatisticsError: variance requires at least two data points

应用: 方差是统计和处理大量数据的一个非常重要的工具。比如,当全知均值未知(样本均值)时,方差被用作有偏估计量。现实世界中的观察结果,比如一家公司全天所有股票的涨跌值,并不是所有可能的观察结果。因此,方差是从一组有限的数据中计算出来的,尽管考虑到整个人群时,方差不会匹配,但它仍然会给用户提供一个估计值,足以计算出其他计算结果。

© 版权声明
THE END
喜欢就支持一下吧
点赞12 分享