这个 模式 一组数据值的 最常出现 。它是最有可能对数据进行采样的值。连续概率分布的模式通常被认为是其 概率密度函数有一个局部最大值,所以任何峰值都是一个模式。 Python在统计和处理一组大范围的值时非常健壮。统计模块有大量的功能来处理非常大的数据集。mode()函数就是这样的方法之一。此函数返回给定数据集范围内中心数据点的稳健度量。
null
例子:
Given data-set is : [1, 2, 3, 4, 4, 4, 4, 5, 6, 7, 7, 7, 8]The mode of the given data-set is 4Logic: 4 is the most occurring/ most common element from the given list
Syntax :mode([data-set])Parameters : [data-set] which is a tuple, list or a iterator of real valued numbers as well as Strings.Return type : Returns the most-common data point from discrete or nominal data.Errors and Exceptions : Raises StatisticsError when data set is empty.
代码#1: 这篇文章将通过一个简单的例子演示mode()函数。
Python3
# Python code to demonstrate the # use of mode() function # mode() function a sub-set of the statistics module # We need to import the statistics module before doing any work import statistics # declaring a simple data-set consisting of real valued # positive integers. set1 = [ 1 , 2 , 3 , 3 , 4 , 4 , 4 , 5 , 5 , 6 ] # In the given data-set # Count of 1 is 1 # Count of 2 is 1 # Count of 3 is 2 # Count of 4 is 3 # Count of 5 is 2 # Count of 6 is 1 # We can infer that 4 has the highest population distribution # So mode of set1 is 4 # Printing out mode of given data-set print ( "Mode of given data set is % s" % (statistics.mode(set1))) |
输出
Mode of given data set is 4
代码#2: 在这段代码中,我们将在各种数据集上演示mode()函数。
Python3
# Python code to demonstrate the # working of mode() function # on a various range of data types # Importing the statistics module from statistics import mode # Importing fractions module as fr # Enables to calculate harmonic_mean of a # set in Fraction from fractions import Fraction as fr # tuple of positive integer numbers data1 = ( 2 , 3 , 3 , 4 , 5 , 5 , 5 , 5 , 6 , 6 , 6 , 7 ) # tuple of a set of floating point values data2 = ( 2.4 , 1.3 , 1.3 , 1.3 , 2.4 , 4.6 ) # tuple of a set of fractional numbers data3 = (fr( 1 , 2 ), fr( 1 , 2 ), fr( 10 , 3 ), fr( 2 , 3 )) # tuple of a set of negative integers data4 = ( - 1 , - 2 , - 2 , - 2 , - 7 , - 7 , - 9 ) # tuple of strings data5 = ( "red" , "blue" , "black" , "blue" , "black" , "black" , "brown" ) # Printing out the mode of the above data-sets print ( "Mode of data set 1 is % s" % (mode(data1))) print ( "Mode of data set 2 is % s" % (mode(data2))) print ( "Mode of data set 3 is % s" % (mode(data3))) print ( "Mode of data set 4 is % s" % (mode(data4))) print ( "Mode of data set 5 is % s" % (mode(data5))) |
输出
Mode of data set 1 is 5Mode of data set 2 is 1.3Mode of data set 3 is 1/2Mode of data set 4 is -2Mode of data set 5 is black
代码#3: 在这段代码中,我们将演示 统计误差 他长大了
Python3
# Python code to demonstrate the # statistics error in mode function ''' StatisticsError is raised while using mode when there are two equal modes present in a data set and when the data set is empty or null ''' # importing statistics module import statistics # creating a data set consisting of two equal data-sets data1 = [ 1 , 1 , 1 , - 1 , - 1 , - 1 ] # In the above data set # Count of 1 is 3 # Count of -1 is also 3 # StatisticsError will be raised print (statistics.mode(data1)) |
输出
Traceback (most recent call last): File "/home/38fbe95fe09d5f65aaa038e37aac20fa.py", line 20, in print(statistics.mode(data1)) File "/usr/lib/python3.5/statistics.py", line 474, in mode raise StatisticsError('no mode for empty data') from Nonestatistics.StatisticsError: no mode for empty data
注意:在较新版本的Python中,如Python 3.8,当序列有多个模式时,实际的数学概念将被应用,其中最小的元素被视为一个模式。
例如,对于上述代码,-1和1的频率是相同的,但是,-1将是模式,因为它的值较小。
应用: mode()是一个统计函数,主要用于金融部门,将价值/价格与过去的细节进行比较,根据价格分布集计算/预测未来可能的价格。mean()不是单独使用的,而是与其他两个统计支柱mean和median一起创建了一个非常强大的工具,可以用来揭示数据的任何方面。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END