Python中的矩阵操作

在python中,矩阵可以实现为2D 列表 或二维阵列。从后者形成矩阵,提供了在矩阵中执行各种操作的附加功能。这些行动和 大堆 是“模块中的定义” 努比 “.

null

矩阵运算:

1.添加():- 此功能用于执行以下操作: 元素矩阵加法 .

2.减法():- 此功能用于执行以下操作: 元素矩阵减法 .

3.除法():- 此功能用于执行以下操作: 元素矩阵除法 .

# Python code to demonstrate matrix operations
# add(), subtract() and divide()
# importing numpy for matrix operations
import numpy
# initializing matrices
x = numpy.array([[ 1 , 2 ], [ 4 , 5 ]])
y = numpy.array([[ 7 , 8 ], [ 9 , 10 ]])
# using add() to add matrices
print ( "The element wise addition of matrix is : " )
print (numpy.add(x,y))
# using subtract() to subtract matrices
print ( "The element wise subtraction of matrix is : " )
print (numpy.subtract(x,y))
# using divide() to divide matrices
print ( "The element wise division of matrix is : " )
print (numpy.divide(x,y))


输出:

The element wise addition of matrix is : 
[[ 8 10]
 [13 15]]
The element wise subtraction of matrix is : 
[[-6 -6]
 [-5 -5]]
The element wise division of matrix is : 
[[ 0.14285714  0.25      ]
 [ 0.44444444  0.5       ]]

4.乘法():- 此功能用于执行以下操作: 元素矩阵乘法 .

5.点():- 此函数用于计算 矩阵乘法,而不是元素乘法 .

# Python code to demonstrate matrix operations
# multiply() and dot()
# importing numpy for matrix operations
import numpy
# initializing matrices
x = numpy.array([[ 1 , 2 ], [ 4 , 5 ]])
y = numpy.array([[ 7 , 8 ], [ 9 , 10 ]])
# using multiply() to multiply matrices element wise
print ( "The element wise multiplication of matrix is : " )
print (numpy.multiply(x,y))
# using dot() to multiply matrices
print ( "The product of matrices is : " )
print (numpy.dot(x,y))


输出:

The element wise multiplication of matrix is : 
[[ 7 16]
 [36 50]]
The product of matrices is : 
[[25 28]
 [73 82]]

6.sqrt():- 此函数用于计算 每个元素的平方根 《黑客帝国》。

7.总和(x轴):- 此函数用于 将矩阵中的所有元素相加 .可选的“axis”参数计算 轴为0时的列和 行和如果 是1 .

8.“T”:- 这个论点被用来 转置 指定的矩阵。

# Python code to demonstrate matrix operations
# sqrt(), sum() and "T"
# importing numpy for matrix operations
import numpy
# initializing matrices
x = numpy.array([[ 1 , 2 ], [ 4 , 5 ]])
y = numpy.array([[ 7 , 8 ], [ 9 , 10 ]])
# using sqrt() to print the square root of matrix
print ( "The element wise square root is : " )
print (numpy.sqrt(x))
# using sum() to print summation of all elements of matrix
print ( "The summation of all matrix element is : " )
print (numpy. sum (y))
# using sum(axis=0) to print summation of all columns of matrix
print ( "The column wise summation of all matrix  is : " )
print (numpy. sum (y,axis = 0 ))
# using sum(axis=1) to print summation of all columns of matrix
print ( "The row wise summation of all matrix  is : " )
print (numpy. sum (y,axis = 1 ))
# using "T" to transpose the matrix
print ( "The transpose of given matrix is : " )
print (x.T)


输出:

The element wise square root is : 
[[ 1.          1.41421356]
 [ 2.          2.23606798]]
The summation of all matrix element is : 
34
The column wise summation of all matrix  is : 
[16 18]
The row wise summation of all matrix  is : 
[15 19]
The transpose of given matrix is : 
[[1 4]
 [2 5]]

本文由 曼吉特·辛格100 .如果你喜欢GeekSforgek,并想贡献自己的力量,你也可以使用 写极客。组织 或者把你的文章寄去评论-team@geeksforgeeks.org.看到你的文章出现在Geeksforgeks主页上,并帮助其他极客。

如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。

© 版权声明
THE END
喜欢就支持一下吧
点赞12 分享