配对,使得一个是另一个的幂倍数

给你一个由n个元素组成的数组A[]和一个正整数k。现在你已经找到了成对数Ai,Aj,这样 Ai=Aj*(k) 十、 ) 其中x是一个整数。 注:(Ai,Aj)和(Aj,Ai)必须计数一次。 例如:

null
Input : A[] = {3, 6, 4, 2},  k = 2Output : 2Explanation : We have only two pairs (4, 2) and (3, 6)Input : A[] = {2, 2, 2},   k = 2Output : 3Explanation : (2, 2), (2, 2), (2, 2) that are (A1, A2), (A2, A3) and (A1, A3) are total three pairs where Ai = Aj * (k^0) 

为了解决这个问题,我们首先对给定的数组进行排序,然后对于每个元素Ai,我们发现对于不同的x值,元素数等于Ai*k^x,直到Ai*k^x小于或等于Ai的最大值。 算法:

    // sort the given array    sort(A, A+n);    // for each A[i] traverse rest array    for (int i=0; i<n; i++)    {        for (int j=i+1; j<n; j++)        {            // count Aj such that Ai*k^x = Aj            int x = 0;            // increase x till Ai * k^x <=             // largest element            while ((A[i]*pow(k, x)) <= A[j])            {                if ((A[i]*pow(k, x)) == A[j])                {                                   ans++;                     break;                }                x++;            }                }       }    // return answer    return ans;

C++

// Program to find pairs count
#include <bits/stdc++.h>
using namespace std;
// function to count the required pairs
int countPairs( int A[], int n, int k) {
int ans = 0;
// sort the given array
sort(A, A + n);
// for each A[i] traverse rest array
for ( int i = 0; i < n; i++) {
for ( int j = i + 1; j < n; j++) {
// count Aj such that Ai*k^x = Aj
int x = 0;
// increase x till Ai * k^x <= largest element
while ((A[i] * pow (k, x)) <= A[j]) {
if ((A[i] * pow (k, x)) == A[j]) {
ans++;
break ;
}
x++;
}
}
}
return ans;
}
// driver program
int main() {
int A[] = {3, 8, 9, 12, 18, 4, 24, 2, 6};
int n = sizeof (A) / sizeof (A[0]);
int k = 3;
cout << countPairs(A, n, k);
return 0;
}


JAVA

// Java program to find pairs count
import java.io.*;
import java .util.*;
class GFG {
// function to count the required pairs
static int countPairs( int A[], int n, int k)
{
int ans = 0 ;
// sort the given array
Arrays.sort(A);
// for each A[i] traverse rest array
for ( int i = 0 ; i < n; i++) {
for ( int j = i + 1 ; j < n; j++)
{
// count Aj such that Ai*k^x = Aj
int x = 0 ;
// increase x till Ai * k^x <= largest element
while ((A[i] * Math.pow(k, x)) <= A[j])
{
if ((A[i] * Math.pow(k, x)) == A[j])
{
ans++;
break ;
}
x++;
}
}
}
return ans;
}
// Driver program
public static void main (String[] args)
{
int A[] = { 3 , 8 , 9 , 12 , 18 , 4 , 24 , 2 , 6 };
int n = A.length;
int k = 3 ;
System.out.println (countPairs(A, n, k));
}
}
// This code is contributed by vt_m.


Python3

# Program to find pairs count
import math
# function to count the required pairs
def countPairs(A, n, k):
ans = 0
# sort the given array
A.sort()
# for each A[i] traverse rest array
for i in range ( 0 ,n):
for j in range (i + 1 , n):
# count Aj such that Ai*k^x = Aj
x = 0
# increase x till Ai * k^x <= largest element
while ((A[i] * math. pow (k, x)) < = A[j]) :
if ((A[i] * math. pow (k, x)) = = A[j]) :
ans + = 1
break
x + = 1
return ans
# driver program
A = [ 3 , 8 , 9 , 12 , 18 , 4 , 24 , 2 , 6 ]
n = len (A)
k = 3
print (countPairs(A, n, k))
# This code is contributed by
# Smitha Dinesh Semwal


C#

// C# program to find pairs count
using System;
class GFG {
// function to count the required pairs
static int countPairs( int []A, int n, int k)
{
int ans = 0;
// sort the given array
Array.Sort(A);
// for each A[i] traverse rest array
for ( int i = 0; i < n; i++)
{
for ( int j = i + 1; j < n; j++)
{
// count Aj such that Ai*k^x = Aj
int x = 0;
// increase x till Ai * k^x <= largest element
while ((A[i] * Math.Pow(k, x)) <= A[j])
{
if ((A[i] * Math.Pow(k, x)) == A[j])
{
ans++;
break ;
}
x++;
}
}
}
return ans;
}
// Driver program
public static void Main ()
{
int []A = {3, 8, 9, 12, 18, 4, 24, 2, 6};
int n = A.Length;
int k = 3;
Console.WriteLine(countPairs(A, n, k));
}
}
// This code is contributed by vt_m.


PHP

<?php
// PHP Program to find pairs count
// function to count
// the required pairs
function countPairs( $A , $n , $k )
{
$ans = 0;
// sort the given array
sort( $A );
// for each A[i]
// traverse rest array
for ( $i = 0; $i < $n ; $i ++)
{
for ( $j = $i + 1; $j < $n ; $j ++)
{
// count Aj such that Ai*k^x = Aj
$x = 0;
// increase x till Ai *
// k^x <= largest element
while (( $A [ $i ] * pow( $k , $x )) <= $A [ $j ])
{
if (( $A [ $i ] * pow( $k , $x )) == $A [ $j ])
{
$ans ++;
break ;
}
$x ++;
}
}
}
return $ans ;
}
// Driver Code
$A = array (3, 8, 9, 12, 18,
4, 24, 2, 6);
$n = count ( $A );
$k = 3;
echo countPairs( $A , $n , $k );
// This code is contributed by anuj_67.
?>


Javascript

<script>
// Javascript Program to find pairs count
// function to count the required pairs
function countPairs(A, n, k) {
var ans = 0;
// sort the given array
A.sort((a,b)=>a-b)
// for each A[i] traverse rest array
for ( var i = 0; i < n; i++) {
for ( var j = i + 1; j < n; j++) {
// count Aj such that Ai*k^x = Aj
var x = 0;
// increase x till Ai * k^x <= largest element
while ((A[i] * Math.pow(k, x)) <= A[j]) {
if ((A[i] * Math.pow(k, x)) == A[j]) {
ans++;
break ;
}
x++;
}
}
}
return ans;
}
// driver program
var A = [3, 8, 9, 12, 18, 4, 24, 2, 6];
var n = A.length;
var k = 3;
document.write( countPairs(A, n, k));
// This code is contributed by rutvik_56.
</script>


输出:

6

© 版权声明
THE END
喜欢就支持一下吧
点赞14 分享