统计数据的偏态性

数组中给定的数据。找出数据分布的偏斜。 偏斜 是对数据分布不对称性的度量。偏态是统计分布中的一种不对称现象,曲线向左或向右出现扭曲或倾斜。偏度可以量化,以定义分布与正态分布的差异程度。偏度可以计算为

null

图片[1]-统计数据的偏态性-yiteyi-C++库

Where gamma is called skewness      sigma is called standard deviation and sigma square can be calculated as      

图片[2]-统计数据的偏态性-yiteyi-C++库

      N is number of population and      mu is called mean of data.  

例如:

Input : arr[] = {2.5, 3.7, 6.6, 9.1, 9.5, 10.7, 11.9, 21.5, 22.6, 25.2}Output : 0.777001Input : arr[] = {5, 20, 40, 80, 100}Output : 0.0980392

更多关于偏斜的信息 https://en.wikipedia.org/wiki/Skewness https://www.universalclass.com/articles/math/statistics/skewness-in-statistical-terms.htm

C++

// CPP code to find skewness
// of statistical data.
#include<bits/stdc++.h>
using namespace std;
// Function to calculate
// mean of data.
float mean( float arr[], int n)
{
float sum = 0;
for ( int i = 0; i < n; i++)
sum = sum + arr[i];
return sum / n;
}
// Function to calculate standard
// deviation of data.
float standardDeviation( float arr[],
int n)
{
float sum = 0;
// find standard deviation
// deviation of data.
for ( int i = 0; i < n; i++)
sum = (arr[i] - mean(arr, n)) *
(arr[i] - mean(arr, n));
return sqrt (sum / n);
}
// Function to calculate skewness.
float skewness( float arr[], int n)
{
// Find skewness using above formula
float sum = 0;
for ( int i = 0; i < n; i++)
sum = (arr[i] - mean(arr, n)) *
(arr[i] - mean(arr, n)) *
(arr[i] - mean(arr, n));
return sum / (n * standardDeviation(arr, n) *
standardDeviation(arr, n) *
standardDeviation(arr, n) *
standardDeviation(arr, n));
}
// Driver function
int main()
{
float arr[] = {2.5, 3.7, 6.6, 9.1,
9.5, 10.7, 11.9, 21.5,
22.6, 25.2};
// calculate size of array.
int n = sizeof (arr)/ sizeof (arr[0]);
// skewness Function call
cout << skewness(arr, n);
return 0;
}


JAVA

// java code to find skewness
// of statistical data.
import java.io.*;
class GFG {
// Function to calculate
// mean of data.
static double mean( double arr[], int n)
{
double sum = 0 ;
for ( int i = 0 ; i < n; i++)
sum = sum + arr[i];
return sum / n;
}
// Function to calculate standard
// deviation of data.
static double standardDeviation( double arr[],
int n)
{
double sum = 0 ;
// find standard deviation
// deviation of data.
for ( int i = 0 ; i < n; i++)
sum = (arr[i] - mean(arr, n)) *
(arr[i] - mean(arr, n));
return Math.sqrt(sum / n);
}
// Function to calculate skewness.
static double skewness( double arr[], int n)
{
// Find skewness using
// above formula
double sum = 0 ;
for ( int i = 0 ; i < n; i++)
sum = (arr[i] - mean(arr, n)) *
(arr[i] - mean(arr, n)) *
(arr[i] - mean(arr, n));
return sum / (n * standardDeviation(arr, n) *
standardDeviation(arr, n) *
standardDeviation(arr, n) *
standardDeviation(arr, n));
}
// Driver function
public static void main (String[] args)
{
double arr[] = { 2.5 , 3.7 , 6.6 , 9.1 ,
9.5 , 10.7 , 11.9 , 21.5 ,
22.6 , 25.2 };
// calculate size of array.
int n = arr.length;
// skewness Function call
System.out.println(skewness(arr, n));
}
}
//This code is contributed by vt_m


Python3

# Python3 code to find skewness
# of statistical data.
from math import sqrt
# Function to calculate
# mean of data.
def mean(arr, n):
summ = 0
for i in range (n):
summ = summ + arr[i]
return summ / n
# Function to calculate standard
# deviation of data.
def standardDeviation(arr,n):
summ = 0
# find standard deviation
# deviation of data.
for i in range (n):
summ = (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n))
return sqrt(summ / n)
# Function to calculate skewness.
def skewness(arr, n):
# Find skewness using above formula
summ = 0
for i in range (n):
summ = (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n))
return summ / (n * standardDeviation(arr, n) * standardDeviation(arr, n) * standardDeviation(arr, n) * standardDeviation(arr, n))
# Driver function
arr = [ 2.5 , 3.7 , 6.6 , 9.1 , 9.5 , 10.7 , 11.9 , 21.5 , 22.6 , 25.2 ]
# calculate size of array.
n = len (arr)
# skewness Function call
print ( '%.6f' % skewness(arr, n))
# This code is contributed by shubhamsingh10


C#

// C# code to find skewness
// of statistical data.
using System;
class GFG {
// Function to calculate
// mean of data.
static float mean( double []arr, int n)
{
double sum = 0;
for ( int i = 0; i < n; i++)
sum = sum + arr[i];
return ( float )sum / n;
}
// Function to calculate standard
// deviation of data.
static float standardDeviation( double []arr,
int n)
{
double sum = 0 ;
// find standard deviation
// deviation of data.
for ( int i = 0; i < n; i++)
sum = (arr[i] - mean(arr, n)) *
(arr[i] - mean(arr, n));
return ( float )Math.Sqrt(sum / n);
}
// Function to calculate skewness.
static float skewness( double []arr, int n)
{
// Find skewness using
// above formula
double sum = 0;
for ( int i = 0; i < n; i++)
sum = (arr[i] - mean(arr, n)) *
(arr[i] - mean(arr, n)) *
(arr[i] - mean(arr, n));
return ( float )sum / (n * standardDeviation(arr, n) *
standardDeviation(arr, n) *
standardDeviation(arr, n) *
standardDeviation(arr, n));
}
// Driver function
public static void Main ()
{
double []arr = { 2.5, 3.7, 6.6, 9.1,
9.5, 10.7, 11.9, 21.5,
22.6, 25.2 };
// calculate size of array.
int n = arr.Length;
// skewness Function call
Console.WriteLine(skewness(arr, n));
}
}
// This code is contributed by vt_m


PHP

<?php
// PHP code to find skewness
// of statistical data.
// Function to calculate
// mean of data.
function mean( $arr , $n )
{
$sum = 0;
for ( $i = 0; $i < $n ; $i ++)
$sum = $sum + $arr [ $i ];
return $sum / $n ;
}
// Function to calculate standard
// deviation of data.
function standardDeviation( $arr , $n )
{
$sum = 0;
// find standard deviation
// deviation of data.
for ( $i = 0; $i < $n ; $i ++)
$sum = ( $arr [ $i ] - mean( $arr , $n )) *
( $arr [ $i ] - mean( $arr , $n ));
return sqrt( $sum / $n );
}
// Function to calculate skewness.
function skewness( $arr , $n )
{
// Find skewness using above formula
$sum = 0;
for ( $i = 0; $i < $n ; $i ++)
$sum = ( $arr [ $i ] - mean( $arr , $n )) *
( $arr [ $i ] - mean( $arr , $n )) *
( $arr [ $i ] - mean( $arr , $n ));
return $sum / ( $n * standardDeviation( $arr , $n ) *
standardDeviation( $arr , $n ) *
standardDeviation( $arr , $n ) *
standardDeviation( $arr , $n ));
}
// Driver Code
$arr = array (2.5, 3.7, 6.6, 9.1, 9.5,
10.7, 11.9, 21.5, 22.6, 25.2);
// calculate size of array.
$n = count ( $arr );
// skewness Function call
echo skewness( $arr , $n );
// This code is contributed by vt_m
?>


Javascript

<script>
// JavaScript code to find skewness
// of statistical data.
// Function to calculate
// mean of data.
function mean(arr, n)
{
let sum = 0;
for (let i = 0; i < n; i++)
sum = sum + arr[i];
return sum / n;
}
// Function to calculate standard
// deviation of data.
function standardDeviation(arr, n)
{
let sum = 0 ;
// find standard deviation
// deviation of data.
for (let i = 0; i < n; i++)
sum = (arr[i] - mean(arr, n)) *
(arr[i] - mean(arr, n));
return Math.sqrt(sum / n);
}
// Function to calculate skewness.
function skewness(arr, n)
{
// Find skewness using
// above formula
let sum = 0;
for (let i = 0; i < n; i++)
sum = (arr[i] - mean(arr, n)) *
(arr[i] - mean(arr, n)) *
(arr[i] - mean(arr, n));
return sum / (n * standardDeviation(arr, n) *
standardDeviation(arr, n) *
standardDeviation(arr, n) *
standardDeviation(arr, n));
}
let arr =
[ 2.5, 3.7, 6.6, 9.1, 9.5, 10.7, 11.9, 21.5, 22.6, 25.2 ];
// calculate size of array.
let n = arr.length;
// skewness Function call
document.write(skewness(arr, n).toFixed(6));
</script>


输出:

0.777001

© 版权声明
THE END
喜欢就支持一下吧
点赞12 分享