给定一个由n个整数组成的数组。求arr[i]mod arr[j]的最大值,其中arr[i]>=arr[j]和1<=i,j<=n 例如:
null
Input: arr[] = {3, 4, 7}Output: 3Explanation:There are 3 pairs which satisfies arr[i] >= arr[j] are:-4, 3 => 4 % 3 = 17, 3 => 7 % 3 = 17, 4 => 7 % 4 = 3Hence Maximum value among all is 3.Input: arr[] = {3, 7, 4, 11}Output: 4Input: arr[] = {4, 4, 4}Output: 0
A. 天真的方法 就是运行两个嵌套的for循环,并在取它们的模后选择每个可能对的最大值。这种方法的时间复杂度为O(n 2. )这对于n的大值是不够的。 一 有效的方法(当元素来自小范围时) 是使用排序和二进制搜索的方法。首先,我们将对数组进行排序,以便能够对其应用二进制搜索。因为我们需要使arr[i]mod arr[j]的值最大化,所以我们迭代从2*arr[j]到M+arr[j]范围内的每个x(这样的x可以被arr[j]整除),其中M是序列的最大值。对于x的每个值,我们需要找到arr[i]的最大值,使得arr[i]
If arr[] = {4, 6, 7, 8, 10, 12, 15} then forfirst element, i.e., arr[j] = 4 we iteratethrough x = {8, 12, 16}. Therefore for each value of x, a[i] will be:-x = 8, arr[i] = 7 (7 < 8) ans = 7 mod 4 = 3 x = 12, arr[i] = 10 (10 < 12) ans = 10 mod 4 = 2 (Since 2 < 3, No update)x = 16, arr[i] = 15 (15 < 16) ans = 15 mod 4 = 3 (Since 3 == 3, No need to update)
C++
// C++ program to find Maximum modulo value #include <bits/stdc++.h> using namespace std; int maxModValue( int arr[], int n) { int ans = 0; // Sort the array[] by using inbuilt sort function sort(arr, arr + n); for ( int j = n - 2; j >= 0; --j) { // Break loop if answer is greater or equals to // the arr[j] as any number modulo with arr[j] // can only give maximum value up-to arr[j]-1 if (ans >= arr[j]) break ; // If both elements are same then skip the next // loop as it would be worthless to repeat the // rest process for same value if (arr[j] == arr[j + 1]) continue ; for ( int i = 2 * arr[j]; i <= arr[n - 1] + arr[j]; i += arr[j]) { // Fetch the index which is greater than or // equals to arr[i] by using binary search // inbuilt lower_bound() function of C++ int ind = lower_bound(arr, arr + n, i) - arr; // Update the answer ans = max(ans, arr[ind - 1] % arr[j]); } } return ans; } // Driver code int main() { int arr[] = { 3, 4, 5, 9, 11 }; int n = sizeof (arr) / sizeof (arr[0]); cout << maxModValue(arr, n); } |
JAVA
// Java program to find Maximum modulo value import java.util.Arrays; class Test { static int maxModValue( int arr[], int n) { int ans = 0 ; // Sort the array[] by using inbuilt sort function Arrays.sort(arr); for ( int j = n - 2 ; j >= 0 ; --j) { // Break loop if answer is greater or equals to // the arr[j] as any number modulo with arr[j] // can only give maximum value up-to arr[j]-1 if (ans >= arr[j]) break ; // If both elements are same then skip the next // loop as it would be worthless to repeat the // rest process for same value if (arr[j] == arr[j + 1 ]) continue ; for ( int i = 2 * arr[j]; i <= arr[n - 1 ] + arr[j]; i += arr[j]) { // Fetch the index which is greater than or // equals to arr[i] by using binary search int ind = Arrays.binarySearch(arr, i); if (ind < 0 ) ind = Math.abs(ind + 1 ); else { while (arr[ind] == i) { ind--; if (ind == 0 ) { ind = - 1 ; break ; } } ind++; } // Update the answer ans = Math.max(ans, arr[ind - 1 ] % arr[j]); } } return ans; } // Driver method public static void main(String args[]) { int arr[] = { 3 , 4 , 5 , 9 , 11 }; System.out.println(maxModValue(arr, arr.length)); } } |
Python3
# Python3 program to find Maximum modulo value def maxModValue(arr, n): ans = 0 # Sort the array[] by using inbuilt # sort function arr = sorted (arr) for j in range (n - 2 , - 1 , - 1 ): # Break loop if answer is greater or equals to # the arr[j] as any number modulo with arr[j] # can only give maximum value up-to arr[j]-1 if (ans > = arr[j]): break # If both elements are same then skip the next # loop as it would be worthless to repeat the # rest process for same value if (arr[j] = = arr[j + 1 ]) : continue i = 2 * arr[j] while (i < = arr[n - 1 ] + arr[j]): # Fetch the index which is greater than or # equals to arr[i] by using binary search # inbuilt lower_bound() function of C++ ind = 0 for k in arr: if k > = i: ind = arr.index(k) # Update the answer ans = max (ans, arr[ind - 1 ] % arr[j]) i + = arr[j] return ans # Driver Code arr = [ 3 , 4 , 5 , 9 , 11 ] n = 5 print (maxModValue(arr, n)) # This code is contributed by # Shubham Singh(SHUBHAMSINGH10) |
C#
// C# program to find Maximum modulo value using System; public class GFG { static int maxModValue( int [] arr, int n) { int ans = 0; // Sort the array[] by using inbuilt // sort function Array.Sort(arr); for ( int j = n - 2; j >= 0; --j) { // Break loop if answer is greater // or equals to the arr[j] as any // number modulo with arr[j] can // only give maximum value up-to // arr[j]-1 if (ans >= arr[j]) break ; // If both elements are same then // skip the next loop as it would // be worthless to repeat the // rest process for same value if (arr[j] == arr[j + 1]) continue ; for ( int i = 2 * arr[j]; i <= arr[n - 1] + arr[j]; i += arr[j]) { // Fetch the index which is // greater than or equals to // arr[i] by using binary search int ind = Array.BinarySearch(arr, i); if (ind < 0) ind = Math.Abs(ind + 1); else { while (arr[ind] == i) { ind--; if (ind == 0) { ind = -1; break ; } } ind++; } // Update the answer ans = Math.Max(ans, arr[ind - 1] % arr[j]); } } return ans; } // Driver method public static void Main() { int [] arr = { 3, 4, 5, 9, 11 }; Console.WriteLine( maxModValue(arr, arr.Length)); } } // This code is contributed by Sam007. |
Javascript
<script> // JavaScript program to find Maximum modulo value function maxModValue(arr, n) { let ans = 0; // Sort the array[] by using inbuilt sort function arr.sort((a, b) => a - b); for (let j = n - 2; j >= 0; --j) { // Break loop if answer is greater or equals to // the arr[j] as any number modulo with arr[j] // can only give maximum value up-to arr[j]-1 if (ans >= arr[j]) break ; // If both elements are same then skip the next // loop as it would be worthless to repeat the // rest process for same value if (arr[j] == arr[j + 1]) continue ; for (let i = 2 * arr[j]; i <= arr[n - 1] + arr[j]; i += arr[j]) { // Fetch the index which is greater than or // equals to arr[i] by using binary search let ind = arr.indexOf(i); if (ind < 0) ind = Math.abs(ind) + 1; else { while (arr[ind] == i) { ind--; if (ind == 0) { ind = -1; break ; } } ind++; } // Update the answer ans = Math.max(ans, arr[ind - 1] % arr[j]); } } return ans; } // Driver method let arr = [3, 4, 5, 9, 11]; document.write(maxModValue(arr, arr.length)); </script> |
输出:
4
时间复杂性: O(nlog(n)+Mlog(M)),其中n是元素总数,M是所有元素的最大值。 辅助空间: O(1) 本博客由 Shubham Bansal .如果你喜欢GeekSforgek,并想贡献自己的力量,你也可以使用 写极客。组织 或者把你的文章寄去评论-team@geeksforgeeks.org.看到你的文章出现在Geeksforgeks主页上,并帮助其他极客。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END