数学|奇偶自然数的平方和

我们知道前n个自然数的平方和是 frac{n(n+1)(2n+1)}{6} .

null

如何计算前n个偶数自然数的平方和? 我们需要计算2 2. + 4 2. + 6 2. + …. + (2n) 2.

EvenSum = 22 + 42 + 62 + .... + (2n)2 
        = 4 x (12 + 22 + 32 + .... + (n)2)
        = 4n(n+1)(2n+1)/6
        = 2n(n+1)(2n+1)/3

例子:

Sum of squares of first 3 even numbers =
                 2n(n+1)(2n+1)/3
               = 2*3(3+1)(2*3+1)/3
               = 56
22 + 42 + 62 = 4 + 16 + 36 = 56

如何计算前n个奇数自然数的平方和? 我们需要计算1 2. + 3 2. + 5 2. + …. + (2n-1) 2.

OddSum  = (Sum of Squares of all 2n numbers) - 
          (Sum of squares of first n even numbers)
        = 2n*(2n+1)*(2*2n + 1)/6 - 2n(n+1)(2n+1)/3
        = 2n(2n+1)/6 [4n+1 - 2(n+1)] 
        = n(2n+1)/3 * (2n-1)
        = n(2n+1)(2n-1)/3

例子:

Sum of squares of first 3 odd numbers = n(2n+1)(2n-1)/3
                                      = 3(2*3+1)(2*3-1)/3
                                      = 35
12 + 32 + 52 = 1 + 9 + 25 = 35

如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写评论

© 版权声明
THE END
喜欢就支持一下吧
点赞5 分享