我们知道前n个自然数的平方和是 .
null
如何计算前n个偶数自然数的平方和? 我们需要计算2 2. + 4 2. + 6 2. + …. + (2n) 2.
EvenSum = 22 + 42 + 62 + .... + (2n)2 = 4 x (12 + 22 + 32 + .... + (n)2) = 4n(n+1)(2n+1)/6 = 2n(n+1)(2n+1)/3
例子:
Sum of squares of first 3 even numbers = 2n(n+1)(2n+1)/3 = 2*3(3+1)(2*3+1)/3 = 56 22 + 42 + 62 = 4 + 16 + 36 = 56
如何计算前n个奇数自然数的平方和? 我们需要计算1 2. + 3 2. + 5 2. + …. + (2n-1) 2.
OddSum = (Sum of Squares of all 2n numbers) - (Sum of squares of first n even numbers) = 2n*(2n+1)*(2*2n + 1)/6 - 2n(n+1)(2n+1)/3 = 2n(2n+1)/6 [4n+1 - 2(n+1)] = n(2n+1)/3 * (2n-1) = n(2n+1)(2n-1)/3
例子:
Sum of squares of first 3 odd numbers = n(2n+1)(2n-1)/3 = 3(2*3+1)(2*3-1)/3 = 35 12 + 32 + 52 = 1 + 9 + 25 = 35
如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写评论
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END