给定成本矩阵cost[]和cost[]中的位置(m,n),编写一个函数,返回从(0,0)到达(m,n)的最小成本路径的成本。矩阵中的每个单元格表示遍历该单元格的成本。到达路径(m,n)的总成本是该路径上所有成本(包括来源和目的地)的总和。只能从给定单元格向下、向右和对角向下移动单元格,即从给定单元格(i,j)移动单元格(i+1,j)、(i,j+1)和(i+1,j+1)。你可以假设所有的代价都是正整数。
例如,在下图中,(2,2)的最小成本路径是什么?
下图突出显示了成本最低的路径。路径为(0,0)–>(0,1)–>(1,2)–>(2,2)。这条路的成本是8(1+2+2+3)。
1) 最优子结构 到达(m,n)的路径必须通过以下三个单元之一:(m-1,n-1)或(m-1,n)或(m,n-1)。所以到达(m,n)的最小成本可以写为“3个单元的最小值加上成本[m][n]”。 minCost(m,n)=min(minCost(m-1,n-1),minCost(m-1,n),minCost(m,n-1))+成本[m][n]
2) 重叠子问题 下面是MCP(最小成本路径)问题的简单递归实现。实现简单地遵循上面提到的递归结构。
C++
// A Naive recursive implementation // of MCP(Minimum Cost Path) problem #include <bits/stdc++.h> using namespace std; #define R 3 #define C 3 int min( int x, int y, int z); // Returns cost of minimum cost path // from (0,0) to (m, n) in mat[R][C] int minCost( int cost[R][C], int m, int n) { if (n < 0 || m < 0) return INT_MAX; else if (m == 0 && n == 0) return cost[m][n]; else return cost[m][n] + min(minCost(cost, m - 1, n - 1), minCost(cost, m - 1, n), minCost(cost, m, n - 1)); } // A utility function that returns // minimum of 3 integers int min( int x, int y, int z) { if (x < y) return (x < z) ? x : z; else return (y < z) ? y : z; } // Driver code int main() { int cost[R][C] = { { 1, 2, 3 }, { 4, 8, 2 }, { 1, 5, 3 } }; cout << minCost(cost, 2, 2) << endl; return 0; } // This code is contributed by nikhilchhipa9 |
C
/* A Naive recursive implementation of MCP(Minimum Cost Path) problem */ #include<stdio.h> #include<limits.h> #define R 3 #define C 3 int min( int x, int y, int z); /* Returns cost of minimum cost path from (0,0) to (m, n) in mat[R][C]*/ int minCost( int cost[R][C], int m, int n) { if (n < 0 || m < 0) return INT_MAX; else if (m == 0 && n == 0) return cost[m][n]; else return cost[m][n] + min( minCost(cost, m-1, n-1), minCost(cost, m-1, n), minCost(cost, m, n-1) ); } /* A utility function that returns minimum of 3 integers */ int min( int x, int y, int z) { if (x < y) return (x < z)? x : z; else return (y < z)? y : z; } /* Driver program to test above functions */ int main() { int cost[R][C] = { {1, 2, 3}, {4, 8, 2}, {1, 5, 3} }; printf ( " %d " , minCost(cost, 2, 2)); return 0; } |
JAVA
/* A Naive recursive implementation of MCP(Minimum Cost Path) problem */ public class GFG { /* A utility function that returns minimum of 3 integers */ static int min( int x, int y, int z) { if (x < y) return (x < z) ? x : z; else return (y < z) ? y : z; } /* Returns cost of minimum cost path from (0,0) to (m, n) in mat[R][C]*/ static int minCost( int cost[][], int m, int n) { if (n < 0 || m < 0 ) return Integer.MAX_VALUE; else if (m == 0 && n == 0 ) return cost[m][n]; else return cost[m][n] + min( minCost(cost, m- 1 , n- 1 ), minCost(cost, m- 1 , n), minCost(cost, m, n- 1 ) ); } // Driver code public static void main(String args[]) { int cost[][] = { { 1 , 2 , 3 }, { 4 , 8 , 2 }, { 1 , 5 , 3 } }; System.out.print(minCost(cost, 2 , 2 )); } } // This code is contributed by Sam007 |
Python3
# A Naive recursive implementation of MCP(Minimum Cost Path) problem R = 3 C = 3 import sys # Returns cost of minimum cost path from (0,0) to (m, n) in mat[R][C] def minCost(cost, m, n): if (n < 0 or m < 0 ): return sys.maxsize elif (m = = 0 and n = = 0 ): return cost[m][n] else : return cost[m][n] + min ( minCost(cost, m - 1 , n - 1 ), minCost(cost, m - 1 , n), minCost(cost, m, n - 1 ) ) #A utility function that returns minimum of 3 integers */ def min (x, y, z): if (x < y): return x if (x < z) else z else : return y if (y < z) else z # Driver program to test above functions cost = [ [ 1 , 2 , 3 ], [ 4 , 8 , 2 ], [ 1 , 5 , 3 ] ] print (minCost(cost, 2 , 2 )) # This code is contributed by # Smitha Dinesh Semwal |
C#
/* A Naive recursive implementation of MCP(Minimum Cost Path) problem */ using System; class GFG { /* A utility function that returns minimum of 3 integers */ static int min( int x, int y, int z) { if (x < y) return ((x < z) ? x : z); else return ((y < z) ? y : z); } /* Returns cost of minimum cost path from (0,0) to (m, n) in mat[R][C]*/ static int minCost( int [,]cost, int m , int n) { if (n < 0 || m < 0) return int .MaxValue; else if (m == 0 && n == 0) return cost[m, n]; else return cost[m, n] + min(minCost(cost, m - 1, n - 1), minCost(cost, m - 1, n), minCost(cost, m, n - 1) ); } // Driver code public static void Main() { int [,]cost = {{1, 2, 3}, {4, 8, 2}, {1, 5, 3}}; Console.Write(minCost(cost, 2, 2)); } } // This code is contributed // by shiv_bhakt. |
PHP
<?php /* A Naive recursive implementation of MCP(Minimum Cost Path) problem */ $R = 3; $C = 3; /* Returns cost of minimum cost path from (0,0) to (m, n) in mat[R][C]*/ function minCost( $cost , $m , $n ) { global $R ; global $C ; if ( $n < 0 || $m < 0) return PHP_INT_MAX; else if ( $m == 0 && $n == 0) return $cost [ $m ][ $n ]; else return $cost [ $m ][ $n ] + min1(minCost( $cost , $m - 1, $n - 1), minCost( $cost , $m - 1, $n ), minCost( $cost , $m , $n - 1) ); } /* A utility function that returns minimum of 3 integers */ function min1( $x , $y , $z ) { if ( $x < $y ) return ( $x < $z )? $x : $z ; else return ( $y < $z )? $y : $z ; } // Driver Code $cost = array ( array (1, 2, 3), array (4, 8, 2), array (1, 5, 3)); echo minCost( $cost , 2, 2); // This code is contributed by mits. ?> |
Javascript
<script> // A Naive recursive implementation of // MCP(Minimum Cost Path) problem // A utility function that returns // minimum of 3 integers function min(x, y, z) { if (x < y) return (x < z) ? x : z; else return (y < z) ? y : z; } // Returns cost of minimum cost path // from (0,0) to (m, n) in mat[R][C] function minCost(cost, m, n) { if (n < 0 || m < 0) return Number.MAX_VALUE; else if (m == 0 && n == 0) return cost[m][n]; else return cost[m][n] + min(minCost(cost, m - 1, n - 1), minCost(cost, m - 1, n), minCost(cost, m, n - 1)); } // Driver code var cost = [ [ 1, 2, 3 ], [ 4, 8, 2 ], [ 1, 5, 3 ] ]; document.write(minCost(cost, 2, 2)); // This code is contributed by gauravrajput1 </script> |
8
时间复杂性: O(m*n)
应该注意的是,上面的函数一次又一次地计算相同的子问题。请参见下面的递归树,其中有许多节点多次出现。这种简单的递归解决方案的时间复杂度是指数级的,而且速度非常慢。
mC refers to minCost() mC(2, 2) / | / | mC(1, 1) mC(1, 2) mC(2, 1) / | / | / | / | / | / | mC(0,0) mC(0,1) mC(1,0) mC(0,1) mC(0,2) mC(1,1) mC(1,0) mC(1,1) mC(2,0)
因此,MCP问题具有两个属性(参见 这 和 这 )一个动态规划问题。像其他典型的 动态规划问题 ,可以通过以自下而上的方式构造临时数组tc[][]来避免相同子问题的重新计算。
C++
/* Dynamic Programming implementation of MCP problem */ #include <bits/stdc++.h> #include<limits.h> #define R 3 #define C 3 using namespace std; int min( int x, int y, int z); int minCost( int cost[R][C], int m, int n) { int i, j; // Instead of following line, we can use int tc[m+1][n+1] or // dynamically allocate memory to save space. The following line is // used to keep the program simple and make it working on all compilers. int tc[R][C]; tc[0][0] = cost[0][0]; /* Initialize first column of total cost(tc) array */ for (i = 1; i <= m; i++) tc[i][0] = tc[i - 1][0] + cost[i][0]; /* Initialize first row of tc array */ for (j = 1; j <= n; j++) tc[0][j] = tc[0][j - 1] + cost[0][j]; /* Construct rest of the tc array */ for (i = 1; i <= m; i++) for (j = 1; j <= n; j++) tc[i][j] = min(tc[i - 1][j - 1], tc[i - 1][j], tc[i][j - 1]) + cost[i][j]; return tc[m][n]; } /* A utility function that returns minimum of 3 integers */ int min( int x, int y, int z) { if (x < y) return (x < z)? x : z; else return (y < z)? y : z; } /* Driver code*/ int main() { int cost[R][C] = { {1, 2, 3}, {4, 8, 2}, {1, 5, 3} }; cout << " " << minCost(cost, 2, 2); return 0; } // This code is contributed by shivanisinghss2110 |
C
/* Dynamic Programming implementation of MCP problem */ #include<stdio.h> #include<limits.h> #define R 3 #define C 3 int min( int x, int y, int z); int minCost( int cost[R][C], int m, int n) { int i, j; // Instead of following line, we can use int tc[m+1][n+1] or // dynamically allocate memory to save space. The following line is // used to keep the program simple and make it working on all compilers. int tc[R][C]; tc[0][0] = cost[0][0]; /* Initialize first column of total cost(tc) array */ for (i = 1; i <= m; i++) tc[i][0] = tc[i-1][0] + cost[i][0]; /* Initialize first row of tc array */ for (j = 1; j <= n; j++) tc[0][j] = tc[0][j-1] + cost[0][j]; /* Construct rest of the tc array */ for (i = 1; i <= m; i++) for (j = 1; j <= n; j++) tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j]; return tc[m][n]; } /* A utility function that returns minimum of 3 integers */ int min( int x, int y, int z) { if (x < y) return (x < z)? x : z; else return (y < z)? y : z; } /* Driver program to test above functions */ int main() { int cost[R][C] = { {1, 2, 3}, {4, 8, 2}, {1, 5, 3} }; printf ( " %d " , minCost(cost, 2, 2)); return 0; } |
JAVA
/* Java program for Dynamic Programming implementation of Min Cost Path problem */ import java.util.*; class MinimumCostPath { /* A utility function that returns minimum of 3 integers */ private static int min( int x, int y, int z) { if (x < y) return (x < z)? x : z; else return (y < z)? y : z; } private static int minCost( int cost[][], int m, int n) { int i, j; int tc[][]= new int [m+ 1 ][n+ 1 ]; tc[ 0 ][ 0 ] = cost[ 0 ][ 0 ]; /* Initialize first column of total cost(tc) array */ for (i = 1 ; i <= m; i++) tc[i][ 0 ] = tc[i- 1 ][ 0 ] + cost[i][ 0 ]; /* Initialize first row of tc array */ for (j = 1 ; j <= n; j++) tc[ 0 ][j] = tc[ 0 ][j- 1 ] + cost[ 0 ][j]; /* Construct rest of the tc array */ for (i = 1 ; i <= m; i++) for (j = 1 ; j <= n; j++) tc[i][j] = min(tc[i- 1 ][j- 1 ], tc[i- 1 ][j], tc[i][j- 1 ]) + cost[i][j]; return tc[m][n]; } /* Driver program to test above functions */ public static void main(String args[]) { int cost[][]= {{ 1 , 2 , 3 }, { 4 , 8 , 2 }, { 1 , 5 , 3 }}; System.out.println(minCost(cost, 2 , 2 )); } } // This code is contributed by Pankaj Kumar |
python
# Dynamic Programming Python implementation of Min Cost Path # problem R = 3 C = 3 def minCost(cost, m, n): # Instead of following line, we can use int tc[m+1][n+1] or # dynamically allocate memoery to save space. The following # line is used to keep te program simple and make it working # on all compilers. tc = [[ 0 for x in range (C)] for x in range (R)] tc[ 0 ][ 0 ] = cost[ 0 ][ 0 ] # Initialize first column of total cost(tc) array for i in range ( 1 , m + 1 ): tc[i][ 0 ] = tc[i - 1 ][ 0 ] + cost[i][ 0 ] # Initialize first row of tc array for j in range ( 1 , n + 1 ): tc[ 0 ][j] = tc[ 0 ][j - 1 ] + cost[ 0 ][j] # Construct rest of the tc array for i in range ( 1 , m + 1 ): for j in range ( 1 , n + 1 ): tc[i][j] = min (tc[i - 1 ][j - 1 ], tc[i - 1 ][j], tc[i][j - 1 ]) + cost[i][j] return tc[m][n] # Driver program to test above functions cost = [[ 1 , 2 , 3 ], [ 4 , 8 , 2 ], [ 1 , 5 , 3 ]] print (minCost(cost, 2 , 2 )) # This code is contributed by Bhavya Jain |
C#
// C# program for Dynamic Programming implementation // of Min Cost Path problem using System; class GFG { // A utility function that // returns minimum of 3 integers private static int min( int x, int y, int z) { if (x < y) return (x < z)? x : z; else return (y < z)? y : z; } private static int minCost( int [,]cost, int m, int n) { int i, j; int [,]tc= new int [m+1,n+1]; tc[0,0] = cost[0,0]; /* Initialize first column of total cost(tc) array */ for (i = 1; i <= m; i++) tc[i, 0] = tc[i - 1, 0] + cost[i, 0]; /* Initialize first row of tc array */ for (j = 1; j <= n; j++) tc[0, j] = tc[0, j - 1] + cost[0, j]; /* Construct rest of the tc array */ for (i = 1; i <= m; i++) for (j = 1; j <= n; j++) tc[i, j] = min(tc[i - 1, j - 1], tc[i - 1, j], tc[i, j - 1]) + cost[i, j]; return tc[m, n]; } // Driver program public static void Main() { int [,]cost= {{1, 2, 3}, {4, 8, 2}, {1, 5, 3}}; Console.Write(minCost(cost,2,2)); } } // This code is contributed by Sam007. |
PHP
<?php // DP implementation // of MCP problem $R = 3; $C = 3; function minCost( $cost , $m , $n ) { global $R ; global $C ; // Instead of following line, // we can use int tc[m+1][n+1] // or dynamically allocate // memory to save space. The // following line is used to keep // the program simple and make // it working on all compilers. $tc ; for ( $i = 0; $i <= $R ; $i ++) for ( $j = 0; $j <= $C ; $j ++) $tc [ $i ][ $j ] = 0; $tc [0][0] = $cost [0][0]; /* Initialize first column of total cost(tc) array */ for ( $i = 1; $i <= $m ; $i ++) $tc [ $i ][0] = $tc [ $i - 1][0] + $cost [ $i ][0]; /* Initialize first row of tc array */ for ( $j = 1; $j <= $n ; $j ++) $tc [0][ $j ] = $tc [0][ $j - 1] + $cost [0][ $j ]; /* Construct rest of the tc array */ for ( $i = 1; $i <= $m ; $i ++) for ( $j = 1; $j <= $n ; $j ++) // returns minimum of 3 integers $tc [ $i ][ $j ] = min( $tc [ $i - 1][ $j - 1], $tc [ $i - 1][ $j ], $tc [ $i ][ $j - 1]) + $cost [ $i ][ $j ]; return $tc [ $m ][ $n ]; } // Driver Code $cost = array ( array (1, 2, 3), array (4, 8, 2), array (1, 5, 3)); echo minCost( $cost , 2, 2); // This code is contributed by mits ?> |
Javascript
<script> // Javascript program for Dynamic Programming implementation // of Min Cost Path problem /* A utility function that returns minimum of 3 integers */ function min(x, y, z) { if (x < y) return (x < z)? x : z; else return (y < z)? y : z; } function minCost(cost, m, n) { let i, j; let tc = new Array(m+1); for (let k = 0; k < m + 1; k++) { tc[k] = new Array(n+1); } tc[0][0] = cost[0][0]; /* Initialize first column of total cost(tc) array */ for (i = 1; i <= m; i++) tc[i][0] = tc[i-1][0] + cost[i][0]; /* Initialize first row of tc array */ for (j = 1; j <= n; j++) tc[0][j] = tc[0][j-1] + cost[0][j]; /* Construct rest of the tc array */ for (i = 1; i <= m; i++) for (j = 1; j <= n; j++) tc[i][j] = Math.min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j]; return tc[m][n]; } let cost = [[1, 2, 3], [4, 8, 2], [1, 5, 3]]; document.write(minCost(cost,2,2)); </script> |
8
DP实现的时间复杂度为O(mn),这比简单的递归实现要好得多。
辅助空间: O(m*n)
空间优化: 其思想是使用相同的给定数组来存储子问题的解。
C++
#include <bits/stdc++.h> #define endl "" using namespace std; const int row = 3; const int col = 3; int minCost( int cost[row][col]) { // for 1st column for ( int i=1 ; i<row ; i++){ cost[i][0] += cost[i-1][0]; } // for 1st row for ( int j=1 ; j<col ; j++){ cost[0][j] += cost[0][j-1]; } // for rest of the 2d matrix for ( int i=1 ; i<row ; i++) { for ( int j=1 ; j<col ; j++) { cost[i][j] += min(cost[i-1][j-1], min(cost[i-1][j], cost[i][j-1])); } } // returning the value in last cell return cost[row-1][col-1]; } int main( int argc, char const *argv[]) { int cost[row][col] = { {1, 2, 3}, {4, 8, 2}, {1, 5, 3} }; cout << minCost(cost) << endl; return 0; } // Contributed by Mansimar-Anand TU_2022 p_e_k_k_a Task @ Codechef/Codeforces |
JAVA
// Java program for the // above approach import java.util.*; class GFG{ static int row = 3 ; static int col = 3 ; static int minCost( int cost[][]) { // for 1st column for ( int i = 1 ; i < row; i++) { cost[i][ 0 ] += cost[i - 1 ][ 0 ]; } // for 1st row for ( int j = 1 ; j < col; j++) { cost[ 0 ][j] += cost[ 0 ][j - 1 ]; } // for rest of the 2d matrix for ( int i = 1 ; i < row; i++) { for ( int j = 1 ; j < col; j++) { cost[i][j] += Math.min(cost[i - 1 ][j - 1 ], Math.min(cost[i - 1 ][j], cost[i][j - 1 ])); } } // Returning the value in // last cell return cost[row - 1 ][col - 1 ]; } // Driver code public static void main(String[] args) { int cost[][] = {{ 1 , 2 , 3 }, { 4 , 8 , 2 }, { 1 , 5 , 3 } }; System.out.print(minCost(cost) + "" ); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 program for the # above approach def minCost(cost, row, col): # For 1st column for i in range ( 1 , row): cost[i][ 0 ] + = cost[i - 1 ][ 0 ] # For 1st row for j in range ( 1 , col): cost[ 0 ][j] + = cost[ 0 ][j - 1 ] # For rest of the 2d matrix for i in range ( 1 , row): for j in range ( 1 , col): cost[i][j] + = ( min (cost[i - 1 ][j - 1 ], min (cost[i - 1 ][j], cost[i][j - 1 ]))) # Returning the value in # last cell return cost[row - 1 ][col - 1 ] # Driver code if __name__ = = '__main__' : row = 3 col = 3 cost = [ [ 1 , 2 , 3 ], [ 4 , 8 , 2 ], [ 1 , 5 , 3 ] ] print (minCost(cost, row, col)); # This code is contributed by Amit Katiyar |
C#
// C# program for the // above approach using System; class GFG{ static int row = 3; static int col = 3; static int minCost( int [,]cost) { // for 1st column for ( int i = 1; i < row; i++) { cost[i, 0] += cost[i - 1, 0]; } // for 1st row for ( int j = 1; j < col; j++) { cost[0, j] += cost[0, j - 1]; } // for rest of the 2d matrix for ( int i = 1; i < row; i++) { for ( int j = 1; j < col; j++) { cost[i,j] += Math.Min(cost[i - 1, j - 1], Math.Min(cost[i - 1, j], cost[i, j - 1])); } } // Returning the value in // last cell return cost[row - 1, col - 1]; } // Driver code public static void Main(String[] args) { int [,]cost = {{1, 2, 3}, {4, 8, 2}, {1, 5, 3} }; Console.Write(minCost(cost) + "" ); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // javascript program for the // above approach var row = 3; var col = 3; function minCost(cost) { // for 1st column for (i = 1; i < row; i++) { cost[i][0] += cost[i - 1][0]; } // for 1st row for (j = 1; j < col; j++) { cost[0][j] += cost[0][j - 1]; } // for rest of the 2d matrix for (i = 1; i < row; i++) { for (j = 1; j < col; j++) { cost[i][j] += Math.min(cost[i - 1][j - 1], Math.min(cost[i - 1][j], cost[i][j - 1])); } } // Returning the value in // last cell return cost[row - 1][col - 1]; } // Driver code var cost = [[1, 2, 3], [4, 8, 2], [1, 5, 3] ]; document.write(minCost(cost) + '<br>' ); // This code is contributed by 29AjayKumar </script> |
8
时间复杂性: O(第*列)
辅助空间: O(1)
替代方案 我们也可以使用 Dijkstra最短路径算法 。以下是该方法的实施情况:
C++
/* Minimum Cost Path using Dijkstra’s shortest path algorithm with Min Heap by dinglizeng */ #include <stdio.h> #include <queue> #include <limits.h> using namespace std; /* define the number of rows and the number of columns */ #define R 4 #define C 5 /* 8 possible moves */ int dx[] = {1,-1, 0, 0, 1, 1,-1,-1}; int dy[] = {0, 0, 1,-1, 1,-1, 1,-1}; /* The data structure to store the coordinates of \ the unit square and the cost of path from the top left. */ struct Cell{ int x; int y; int cost; }; /* The compare class to be used by a Min Heap. * The greater than condition is used as this is for a Min Heap based on priority_queue. */ class mycomparison { public : bool operator() ( const Cell &lhs, const Cell &rhs) const { return (lhs.cost > rhs.cost); } }; /* To verify whether a move is within the boundary. */ bool isSafe( int x, int y){ return x >= 0 && x < R && y >= 0 && y < C; } /* This solution is based on Dijkstra’s shortest path algorithm * For each unit square being visited, we examine all possible next moves in 8 directions, * calculate the accumulated cost of path for each next move, adjust the cost of path of the adjacent units to the minimum as needed. * then add the valid next moves into a Min Heap. * The Min Heap pops out the next move with the minimum accumulated cost of path. * Once the iteration reaches the last unit at the lower right corner, the minimum cost path will be returned. */ int minCost( int cost[R][C], int m, int n) { /* the array to store the accumulated cost of path from top left corner */ int dp[R][C]; /* the array to record whether a unit square has been visited */ bool visited[R][C]; /* Initialize these two arrays, set path cost to maximum integer value, each unit as not visited */ for ( int i = 0; i < R; i++) { for ( int j = 0; j < C; j++) { dp[i][j] = INT_MAX; visited[i][j] = false ; } } /* Define a reverse priority queue. * Priority queue is a heap based implementation. * The default behavior of a priority queue is to have the maximum element at the top. * The compare class is used in the definition of the Min Heap. */ priority_queue<Cell, vector<Cell>, mycomparison> pq; /* initialize the starting top left unit with the cost and add it to the queue as the first move. */ dp[0][0] = cost[0][0]; pq.push({0, 0, cost[0][0]}); while (!pq.empty()) { /* pop a move from the queue, ignore the units already visited */ Cell cell = pq.top(); pq.pop(); int x = cell.x; int y = cell.y; if (visited[x][y]) continue ; /* mark the current unit as visited */ visited[x][y] = true ; /* examine all non-visited adjacent units in 8 directions * calculate the accumulated cost of path for each next move from this unit, * adjust the cost of path for each next adjacent units to the minimum if possible. */ for ( int i = 0; i < 8; i++) { int next_x = x + dx[i]; int next_y = y + dy[i]; if (isSafe(next_x, next_y) && !visited[next_x][next_y]) { dp[next_x][next_y] = min(dp[next_x][next_y], dp[x][y] + cost[next_x][next_y]); pq.push({next_x, next_y, dp[next_x][next_y]}); } } } /* return the minimum cost path at the lower right corner */ return dp[m][n]; } /* Driver program to test above functions */ int main() { int cost[R][C] = { {1, 8, 8, 1, 5}, {4, 1, 1, 8, 1}, {4, 2, 8, 8, 1}, {1, 5, 8, 8, 1} }; printf ( " %d " , minCost(cost, 3, 4)); return 0; } |
7
在该解决方案中,使用反向优先级队列可以降低与以最小路径代价查找节点的完全扫描相比的时间复杂度。DP实现的总体时间复杂度为O(mn),不考虑使用的优先级队列,这比简单的递归实现要好得多。
?list=PLqM7alHXFySEQDk2MDfbwEdjd2svVJH9p
如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。